
A Marriage of Pre-trained Language
Models and Component-based Synthesis

Multi-modal Program Inference:

Kia Rahmani, Mohammad Raza, Sumit Gulwani, Vu Le,

Daniel Morris, Arjun Radhakrishna, Gustavo Soares, Ashish Tiwari

2

THE STORY OF TRANSFORMERS

PRE-TRAINED NATURAL LANGUAGE MODELS (PTM)

3

• BERT, ELMo and ERNIE

• Neural architectures optimized
for language understanding

BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova

Google AI Language
{jacobdevlin,mingweichang,kentonl,kristout}@google.com

Abstract

We introduce a new language representa-
tion model called BERT, which stands for
Bidirectional Encoder Representations from
Transformers. Unlike recent language repre-
sentation models (Peters et al., 2018a; Rad-
ford et al., 2018), BERT is designed to pre-
train deep bidirectional representations from
unlabeled text by jointly conditioning on both
left and right context in all layers. As a re-
sult, the pre-trained BERT model can be fine-
tuned with just one additional output layer
to create state-of-the-art models for a wide
range of tasks, such as question answering and
language inference, without substantial task-
specific architecture modifications.

BERT is conceptually simple and empirically
powerful. It obtains new state-of-the-art re-
sults on eleven natural language processing
tasks, including pushing the GLUE score to
80.5% (7.7% point absolute improvement),
MultiNLI accuracy to 86.7% (4.6% absolute
improvement), SQuAD v1.1 question answer-
ing Test F1 to 93.2 (1.5 point absolute im-
provement) and SQuAD v2.0 Test F1 to 83.1
(5.1 point absolute improvement).

1 Introduction

Language model pre-training has been shown to
be effective for improving many natural language
processing tasks (Dai and Le, 2015; Peters et al.,
2018a; Radford et al., 2018; Howard and Ruder,
2018). These include sentence-level tasks such as
natural language inference (Bowman et al., 2015;
Williams et al., 2018) and paraphrasing (Dolan
and Brockett, 2005), which aim to predict the re-
lationships between sentences by analyzing them
holistically, as well as token-level tasks such as
named entity recognition and question answering,
where models are required to produce fine-grained
output at the token level (Tjong Kim Sang and
De Meulder, 2003; Rajpurkar et al., 2016).

There are two existing strategies for apply-
ing pre-trained language representations to down-
stream tasks: feature-based and fine-tuning. The
feature-based approach, such as ELMo (Peters
et al., 2018a), uses task-specific architectures that
include the pre-trained representations as addi-
tional features. The fine-tuning approach, such as
the Generative Pre-trained Transformer (OpenAI
GPT) (Radford et al., 2018), introduces minimal
task-specific parameters, and is trained on the
downstream tasks by simply fine-tuning all pre-
trained parameters. The two approaches share the
same objective function during pre-training, where
they use unidirectional language models to learn
general language representations.

We argue that current techniques restrict the
power of the pre-trained representations, espe-
cially for the fine-tuning approaches. The ma-
jor limitation is that standard language models are
unidirectional, and this limits the choice of archi-
tectures that can be used during pre-training. For
example, in OpenAI GPT, the authors use a left-to-
right architecture, where every token can only at-
tend to previous tokens in the self-attention layers
of the Transformer (Vaswani et al., 2017). Such re-
strictions are sub-optimal for sentence-level tasks,
and could be very harmful when applying fine-
tuning based approaches to token-level tasks such
as question answering, where it is crucial to incor-
porate context from both directions.

In this paper, we improve the fine-tuning based
approaches by proposing BERT: Bidirectional
Encoder Representations from Transformers.
BERT alleviates the previously mentioned unidi-
rectionality constraint by using a “masked lan-
guage model” (MLM) pre-training objective, in-
spired by the Cloze task (Taylor, 1953). The
masked language model randomly masks some of
the tokens from the input, and the objective is to
predict the original vocabulary id of the masked

ar
X

iv
:1

81
0.

04
80

5v
2

 [c
s.C

L]
 2

4
M

ay
 2

01
9

2018
Proceedings of NAACL-HLT 2018, pages 2227–2237

New Orleans, Louisiana, June 1 - 6, 2018. c�2018 Association for Computational Linguistics

Deep contextualized word representations
Matthew E. Peters†, Mark Neumann†, Mohit Iyyer†, Matt Gardner†,

{matthewp,markn,mohiti,mattg}@allenai.org

Christopher Clark�, Kenton Lee�, Luke Zettlemoyer†�

{csquared,kentonl,lsz}@cs.washington.edu

†Allen Institute for Artificial Intelligence
�Paul G. Allen School of Computer Science & Engineering, University of Washington

Abstract

We introduce a new type of deep contextual-
ized word representation that models both (1)
complex characteristics of word use (e.g., syn-
tax and semantics), and (2) how these uses
vary across linguistic contexts (i.e., to model
polysemy). Our word vectors are learned func-
tions of the internal states of a deep bidirec-
tional language model (biLM), which is pre-
trained on a large text corpus. We show that
these representations can be easily added to
existing models and significantly improve the
state of the art across six challenging NLP
problems, including question answering, tex-
tual entailment and sentiment analysis. We
also present an analysis showing that exposing
the deep internals of the pre-trained network is
crucial, allowing downstream models to mix
different types of semi-supervision signals.

1 Introduction

Pre-trained word representations (Mikolov et al.,
2013; Pennington et al., 2014) are a key compo-
nent in many neural language understanding mod-
els. However, learning high quality representa-
tions can be challenging. They should ideally
model both (1) complex characteristics of word
use (e.g., syntax and semantics), and (2) how these
uses vary across linguistic contexts (i.e., to model
polysemy). In this paper, we introduce a new type
of deep contextualized word representation that
directly addresses both challenges, can be easily
integrated into existing models, and significantly
improves the state of the art in every considered
case across a range of challenging language un-
derstanding problems.

Our representations differ from traditional word
type embeddings in that each token is assigned a
representation that is a function of the entire input
sentence. We use vectors derived from a bidirec-
tional LSTM that is trained with a coupled lan-

guage model (LM) objective on a large text cor-
pus. For this reason, we call them ELMo (Em-
beddings from Language Models) representations.
Unlike previous approaches for learning contextu-
alized word vectors (Peters et al., 2017; McCann
et al., 2017), ELMo representations are deep, in
the sense that they are a function of all of the in-
ternal layers of the biLM. More specifically, we
learn a linear combination of the vectors stacked
above each input word for each end task, which
markedly improves performance over just using
the top LSTM layer.

Combining the internal states in this manner al-
lows for very rich word representations. Using in-
trinsic evaluations, we show that the higher-level
LSTM states capture context-dependent aspects
of word meaning (e.g., they can be used with-
out modification to perform well on supervised
word sense disambiguation tasks) while lower-
level states model aspects of syntax (e.g., they can
be used to do part-of-speech tagging). Simultane-
ously exposing all of these signals is highly bene-
ficial, allowing the learned models select the types
of semi-supervision that are most useful for each
end task.

Extensive experiments demonstrate that ELMo
representations work extremely well in practice.
We first show that they can be easily added to
existing models for six diverse and challenging
language understanding problems, including tex-
tual entailment, question answering and sentiment
analysis. The addition of ELMo representations
alone significantly improves the state of the art
in every case, including up to 20% relative error
reductions. For tasks where direct comparisons
are possible, ELMo outperforms CoVe (McCann
et al., 2017), which computes contextualized rep-
resentations using a neural machine translation en-
coder. Finally, an analysis of both ELMo and
CoVe reveals that deep representations outperform

2227

2018

ERNIE: Enhanced Language Representation with Informative Entities

Zhengyan Zhang
1,2,3⇤

, Xu Han
1,2,3⇤

, Zhiyuan Liu
1,2,3†

, Xin Jiang
4
, Maosong Sun

1,2,3
, Qun Liu

4

1Department of Computer Science and Technology, Tsinghua University, Beijing, China
2Institute for Artificial Intelligence, Tsinghua University, Beijing, China

3State Key Lab on Intelligent Technology and Systems, Tsinghua University, Beijing, China
4Huawei Noah’s Ark Lab

{zhangzhengyan14,hanxu17}@mails.tsinghua.edu.cn

Abstract

Neural language representation models such
as BERT pre-trained on large-scale corpora
can well capture rich semantic patterns from
plain text, and be fine-tuned to consistently im-
prove the performance of various NLP tasks.
However, the existing pre-trained language
models rarely consider incorporating knowl-
edge graphs (KGs), which can provide rich
structured knowledge facts for better language
understanding. We argue that informative en-
tities in KGs can enhance language represen-
tation with external knowledge. In this pa-
per, we utilize both large-scale textual cor-
pora and KGs to train an enhanced language
representation model (ERNIE), which can
take full advantage of lexical, syntactic, and
knowledge information simultaneously. The
experimental results have demonstrated that
ERNIE achieves significant improvements on
various knowledge-driven tasks, and mean-
while is comparable with the state-of-the-art
model BERT on other common NLP tasks.
The source code and experiment details of
this paper can be obtained from https://

github.com/thunlp/ERNIE.

1 Introduction

Pre-trained language representation models, in-
cluding feature-based (Mikolov et al., 2013; Pen-
nington et al., 2014; Peters et al., 2017, 2018) and
fine-tuning (Dai and Le, 2015; Howard and Ruder,
2018; Radford et al., 2018; Devlin et al., 2019)
approaches, can capture rich language informa-
tion from text and then benefit many NLP appli-
cations. BERT (Devlin et al., 2019), as one of the
most recently proposed models, obtains the state-
of-the-art results on various NLP applications by
simple fine-tuning, including named entity recog-
nition (Sang and De Meulder, 2003), question

⇤ indicates equal contribution
† Corresponding author: Z.Liu(liuzy@tsinghua.edu.cn)

is_ais_a

Song Book
auth

or
composer

Bob Dylan

Chronicles:
Volume OneBlowin’ in the wind

Songwriter Writer

is_ais_a

Bob Dylan wrote Blowin’ in the Wind in 1962, and wrote Chronicles: Volume One in 2004.

Figure 1: An example of incorporating extra
knowledge information for language understand-
ing. The solid lines present the existing knowl-
edge facts. The red dotted lines present the facts
extracted from the sentence in red. The green dot-
dash lines present the facts extracted from the sen-
tence in green.

answering (Rajpurkar et al., 2016; Zellers et al.,
2018), natural language inference (Bowman et al.,
2015), and text classification (Wang et al., 2018).

Although pre-trained language representation
models have achieved promising results and
worked as a routine component in many NLP
tasks, they neglect to incorporate knowledge in-
formation for language understanding. As shown
in Figure 1, without knowing Blowin’ in the Wind
and Chronicles: Volume One are song and book
respectively, it is difficult to recognize the two oc-
cupations of Bob Dylan, i.e., songwriter and
writer, on the entity typing task. Furthermore,
it is nearly impossible to extract the fine-grained
relations, such as composer and author on
the relation classification task. For the existing
pre-trained language representation models, these
two sentences are syntactically ambiguous, like
“UNK wrote UNK in UNK”. Hence, considering
rich knowledge information can lead to better lan-
guage understanding and accordingly benefits var-
ious knowledge-driven applications, e.g. entity
typing and relation classification.

For incorporating external knowledge into lan-
guage representation models, there are two main

ar
X

iv
:1

90
5.

07
12

9v
3

 [c
s.C

L]
 4

 Ju
n

20
19

2019

PRE-TRAINED NATURAL LANGUAGE MODELS (PTM)

4

• BERT, ELMo and ERNIE

• Neural architectures optimized
for language understanding

• Trained on a large corpus of text

WWW

GPT-3 FROM OPEN AI

5

GPT-3

45 TB 175B
• Latest model from GPT-n series

• Deployed in 300 applications

• Generates 4.5B words per day

GPT-3 FROM OPEN AI

6

• Latest model from GPT-n series

• Deployed in 300 applications

• Generates 4.5B words per day

• Can be “taught” by showing a few
examples of the tasks

• Few-shot Learning

• (Very!) diverse use-cases

GPT-3

45 TB 175B

GPT-3 FOR CODE GENERATION

7

• “Rise of AI language models in
programming automation”

GPT-3 FOR CODE GENERATION

8

• “Rise of AI language models in
programming automation”

• Github Copilot

• A dozen programming

languages

Powered by OpenAI Codex

GPT-3 FOR CODE GENERATION (CONT’D)

9

• “Rise of AI language models in
programming automation”

• Github Copilot

• A dozen programming

languages

• Limited Precision

FIRST HAND EXPERIMENTS WITH (NL→CODE)

10

• Domain of Regular Expressions (REGEX)

• concise search patterns

• terminals and operators

Operators

Terminals

FIRST HAND EXPERIMENTS WITH (NL→CODE)

11

[0−9]+:?[0−9]∗

At least one digit,
followed by ‘:’ at most once,
followed by a digit at least zero times

• Domain of Regular Expressions (REGEX)

• concise search patterns

• terminals and operators

FIRST HAND EXPERIMENTS WITH (NL→CODE)

12

[0−9]+:?[0−9]∗

At least one digit,
followed by ‘:’ at most once,
followed by a digit at least zero times

• Domain of Regular Expressions (REGEX)

• concise search patterns

• terminals and operators

FIRST HAND EXPERIMENTS WITH (NL→CODE)

13

[0−9]+:?[0−9]∗

At least one digit,
followed by ‘:’ at most once,
followed by a digit at least zero times

• Domain of Regular Expressions (REGEX)

• concise search patterns

• terminals and operators

FIRST HAND EXPERIMENTS WITH (NL→CODE)

14

[0−9]+:?[0−9]∗

At least one digit,
followed by ‘:’ at most once,
followed by a digit at least zero times

12 , Abc
2345:6789 , 123

• Domain of Regular Expressions (REGEX)

• concise search patterns

• terminals and operators

FIRST HAND EXPERIMENTS WITH (NL→CODE)

15

[0−9]+:?[0−9]∗
([0−9]∗.. :([0−9]∗)?)+

([0−9]? : [0−9]?)∗

([0−9]{1, }(?: .[0−9]{0, }))∗

[0−9]{3}

([0−9]+ :)?[0−9]?

(digit{3})+

([0−9]∗ ([:] [0−9]∗))∗ (0[0−9]+)

([0−9]∗ .. :∗[0−9]∗ 0∗)∗

At least one digit,
followed by ‘:’ at most once,
followed by a digit at least zero times

GPT-3

2345:6789 , 123
12 , Abc

• Domain of Regular Expressions (REGEX)

• concise search patterns

• terminals and operators

FIRST HAND EXPERIMENTS WITH (NL→CODE)

16

• Evaluated on 2 standard benchmark sets

• Less than 15% overall success rate

• Compared to almost 60% success rate
of the state-of-the-art [2]

G3T-3 %F6 REGEL 1LX-REG
0

20

40

60

80

100

AF
FX

ra
Fy

 %

G3T-3 %F6 REGEL 1LX-REG
0

20

40

60

80

100

AF
FX

ra
Fy

 %

17

END OF THE STORY?

NOT THE END OF THE STORY!

18

• Similarities between target and candidates:

([0−9]∗.. :([0−9]∗)?)+

([0−9]? : [0−9]?)∗

([0−9]{1, }(?: .[0−9]{0, }))∗

[0−9]{3}

([0−9]+ :)?[0−9]?

(digit{3})+

([0−9]∗ ([:] [0−9]∗))∗ (0[0−9]+)

([0−9]∗ .. :∗[0−9]∗ 0∗)∗

[0−9]+:?[0−9]∗

NOT THE END OF THE STORY!

19

• Similarities between target and candidates:

• Components of target are present

([0−9]∗.. :([0−9]∗)?)+

([0−9]? : [0−9]?)∗

([0−9]{1, }(?: .[0−9]{0, }))∗

[0−9]{3}

([0−9]+ :)?[0−9]?

(digit{3})+

([0−9]∗ ([:] [0−9]∗))∗ (0[0−9]+)

([0−9]∗ .. :∗[0−9]∗ 0∗)∗

([0−9]∗.. :([0−9]∗)?)+

([0−9]? : [0−9]?)∗

([0−9]{1, }(?: .[0−9]{0, }))∗

[0−9]{3}

([0−9]+ :)?[0−9]?

(digit{3})+

([0−9]∗ ([:] [0−9]∗))∗ (0[0−9]+)

([0−9]∗ .. :∗[0−9]∗ 0∗)∗

[0−9]+:?[0−9]∗[0−9]+:?[0−9]∗

NOT THE END OF THE STORY!

20

• Similarities between target and candidates:

• Components of target are present

• Similar shape (operator types) to the target

([0−9]∗.. :([0−9]∗)?)+

([0−9]? : [0−9]?)∗

([0−9]{1, }(?: .[0−9]{0, }))∗

[0−9]{3}

([0−9]+ :)?[0−9]?

(digit{3})+

([0−9]∗ ([:] [0−9]∗))∗ (0[0−9]+)

([0−9]∗ .. :∗[0−9]∗ 0∗)∗

[0−9]+:?[0−9]∗

NLX PROGRAM SYNTHESIS FRAMEWORK

21

• Similarities between target and candidates:

• Components of target are present

• Similar shape (operator types) to the target

• NLX framework

• Combine PTM with program synthesis NLX

λ

Syntactically and
Semantically
Precise Code

Handle Ambiguous
Natural Language

22

• NLX framework

• Multi-modal

• Domain agnostic

NLX
λ

NLX PROGRAM SYNTHESIS FRAMEWORK

[0−9]+:?[0−9]∗

GPT-3

([0−9]∗.. :([0−9]∗)?)+

([0−9]? : [0−9]?)∗

([0−9]{1, }(?: .[0−9]{0, }))∗

…

At least one digit, followed
by ‘:’ at most once, followed
by a digit at least zero times

+ 12345:6789 123
- :12 abc

COMPONENT-BASED SYNTHESIS (CBS)

23

t1 t2
t3

• Search based approach

• Seed terms

COMPONENT-BASED SYNTHESIS (CBS)

24

op(t1)

t1 t2
t3

op(t2) op(t3)
op’(t2,t3)op’(t3,t2)

• Search based approach

• Seed terms

• Iterative expansion

…

COMPONENT-BASED SYNTHESIS (CBS)

25

op(t1)

t1 t2
t3

op(t2) op(t3)
op’(t2,t3)op’(t3,t2)

• Search based approach

• Seed terms

• Iterative expansion

…

op(op(t1))
op’(op(t1),op’(t3,t2))

…

…

COMPONENT-BASED SYNTHESIS (CBS)

26

op(t1)

t1 t2
t3

op(t2) op(t3)
op’(t2,t3)op’(t3,t2)

• Search based approach

• Seed terms

• Iterative expansion

• Find consistent programs

…

op(op(t1))
op’(op(t1),op’(t3,t2))

…

…

…
P1

P2 Pn

CHALLENGES WITH CBS

27

…
…

…

• Search based approach

• Seed terms

• Iterative expansion

• Find consistent programs

• Challenges:

• Useful + concise seeds

?

CHALLENGES WITH SEARCH

28

…
…

…

• Search based approach

• Seed terms

• Iterative expansion

• Find consistent programs

• Challenges:

• Useful + concise seeds

• State-space explosion

CHALLENGES WITH SEARCH

29

…
…

… PnPn

Pn Pn

Pn

• Search based approach

• Seed terms

• Iterative expansion

• Find consistent programs

• Challenges:

• Useful + concise seeds

• State-space explosion

• Final ranking

30

NLX Solution

SEED COMPONENTS

31

• Extract components from PTM’s candidates
([0−9]∗.. :([0−9]∗)?)+

[0−9]∗.. :([0−9]∗)?

[0−9]∗.. :
([0−9]∗)?

[0−9]∗..

:
.

[0−9]∗.
[0−9]∗
[0−9]
0
9

Can become
prohibitively large!

SEED COMPONENTS

32

• Extract components from PTM’s candidates

• Eliminate infrequent components

([0−9]∗.. :([0−9]∗)?)+ ([0−9]+ :)?[0−9]?

([0−9]? : [0−9]?)∗ ([0−9]{3})+

([0−9]{1, }(?: .[0−9]{0, }))∗ ([0−9]∗ ([:] [0−9]∗))∗ (0[0−9]+)

(digit){3} ([0−9]∗ .. :∗[0−9]∗ 0∗)∗

SEED COMPONENTS

33

• Extract components from PTM’s candidates

• Eliminate infrequent components

([0−9]∗.. :([0−9]∗)?)+ ([0−9]+ :)?[0−9]?

([0−9]? : [0−9]?)∗ ([0−9]{3})+

([0−9]{1, }(?: .[0−9]{0, }))∗ ([0−9]∗ ([:] [0−9]∗))∗ (0[0−9]+)

(digit){3} ([0−9]∗ .. :∗[0−9]∗ 0∗)∗

SEED COMPONENTS

34

• Extract components from PTM’s candidates

• Eliminate infrequent components

• Eliminate redundant components

([0−9]∗.. :([0−9]∗)?)+

[0−9]∗.. :([0−9]∗)?

[0−9]∗.. :
([0−9]∗)?

[0−9]∗..

:
.

[0−9]∗.
[0−9]∗
[0−9]
0
9

([0−9]∗.. :([0−9]∗)?)+ ([0−9]+ :)?[0−9]?

([0−9]? : [0−9]?)∗ ([0−9]{3})+

([0−9]{1, }(?: .[0−9]{0, }))∗ ([0−9]∗ ([:] [0−9]∗))∗ (0[0−9]+)

(digit){3} ([0−9]∗ .. :∗[0−9]∗ 0∗)∗

SEED COMPONENTS

35

• Extract components from PTM’s candidates

• Eliminate infrequent components

• Eliminate redundant components

• Non-Maximal component: 0, 9

• Maximal component: [0-9]

([0−9]∗.. :([0−9]∗)?)+

[0−9]∗.. :([0−9]∗)?

[0−9]∗.. :
([0−9]∗)?

[0−9]∗..

:
.

[0−9]∗.
[0−9]∗
[0−9]
0
9

([0−9]∗.. :([0−9]∗)?)+ ([0−9]+ :)?[0−9]?

([0−9]? : [0−9]?)∗ ([0−9]{3})+

([0−9]{1, }(?: .[0−9]{0, }))∗ ([0−9]∗ ([:] [0−9]∗))∗ (0[0−9]+)

(digit){3} ([0−9]∗ .. :∗[0−9]∗ 0∗)∗

ITERATIVE EXPANSION

36

• Beam search

ITERATIVE EXPANSION

37

• Beam search

Only a subset of terms
are considered

ITERATIVE EXPANSION

38

• Beam search

Only a subset of terms
are considered

ITERATIVE EXPANSION

39

• Beam search

Only a subset of terms
are considered

ITERATIVE EXPANSION

40

• Beam search

Only a subset of terms
are considered

P

ITERATIVE EXPANSION

41

([0−9]∗.. :([0−9]∗)?)+

([0−9]? : [0−9]?)∗

([0−9]{1, }(?: .[0−9]{0, }))∗

[0−9]{3}

([0−9]+ :)?[0−9]?

(digit{3})+

([0−9]∗ ([:] [0−9]∗))∗ (0[0−9]+)

([0−9]∗ .. :∗[0−9]∗ 0∗)∗

Alter operator is
NOT used

No need to apply
Alter at expansions

• Beam search

• Bias the search w.r.t. operator distribution

• Eliminate low-frequency operators

ITERATIVE EXPANSION

42

• Beam search

• Bias the search w.r.t. operator distribution

• Eliminate low-frequency operators

• How to define the beam?
5

2

6
7

3
4

1
?

ITERATIVE EXPANSION

43

+ 12345:6789 123
- :12 abc

5

2

6
7

3
4

1

• Beam search

• Bias the search w.r.t. operator distribution

• Eliminate low-frequency operators

• How to define the beam?

• Semantic condensation
• Classify candidates using examples

ITERATIVE EXPANSION

44

?

+ 12345:6789 123
- :12 abc

5

2

6
7

3
4

1

• Beam search

• Bias the search w.r.t. operator distribution

• Eliminate low-frequency operators

• How to define the beam?

• Semantic condensation
• Classify candidates using examples

• Pick top candidates from each class

ITERATIVE EXPANSION

45

5

2

6
7

3
4

1

• Beam search

• Bias the search w.r.t. operator distribution

• Eliminate low-frequency operators

• How to define the beam?

• Semantic condensation
• Classify candidates using examples

• Pick top candidates from each class

51

Semantically diverse
components

FINAL RANKING

46

• A large number of programs which satisfy the examples

[0-9]+:?[0-9]*
[0-9]+:?[0-9]+
[0-9]+:?[0-3]{0,4}
[0-5]+:?[6-9]*

+ 12345:6789 123
- :12 abc Final Output?

([0−9]∗.. :([0−9]∗)?)+

([0−9]? : [0−9]?)∗

([0−9]{1, }(?: .[0−9]{0, }))∗

[0−9]{3}

([0−9]+ :)?[0−9]?

(digit{3})+

([0−9]∗ ([:] [0−9]∗))∗ (0[0−9]+)

([0−9]∗ .. :∗[0−9]∗ 0∗)∗

FINAL RANKING

47

• A large number of programs which satisfy the examples

• Euclidean distance

• Levenshtein distance

[0-9]+:?[0-9]*
[0-9]+:?[0-9]+
[0-9]+:?[0-3]{0,4}
[0-5]+:?[6-9]*

([0−9]∗.. :([0−9]∗)?)+

([0−9]? : [0−9]?)∗

([0−9]{1, }(?: .[0−9]{0, }))∗

[0−9]{3}

([0−9]+ :)?[0−9]?

(digit{3})+

([0−9]∗ ([:] [0−9]∗))∗ (0[0−9]+)

([0−9]∗ .. :∗[0−9]∗ 0∗)∗

Min (Lev + Eauc) Final Output?

FINAL RANKING

48

• A large number of programs which satisfy the examples

• Euclidean distance

• Levenshtein distance

[0-9]+:?[0-9]*
[0-9]+:?[0-9]+
[0-9]+:?[0-3]{0,4}
[0-5]+:?[6-9]*

([0−9]∗.. :([0−9]∗)?)+

([0−9]? : [0−9]?)∗

([0−9]{1, }(?: .[0−9]{0, }))∗

[0−9]{3}

([0−9]+ :)?[0−9]?

(digit{3})+

([0−9]∗ ([:] [0−9]∗))∗ (0[0−9]+)

([0−9]∗ .. :∗[0−9]∗ 0∗)∗

[0-9]+:?[0-9]*Min (Lev + Eauc)

49

EMPIRICAL RESULTS

EXPERIMENTAL EVALUATION

50

G3T-3 %F6 REGEL 1LX-REG
0

20

40

60

80

100

AF
FX

ra
Fy

 %

• Two Data sets

• StackOverflow: 25 tasks

• Previous work: 125 tasks

• NLX-REG outperforms the state-of-the-art

READ MORE!

51

https://doi.org/10.1145/3485535

158

Multi-modal Program Inference: A Marriage of Pre-trained
Language Models and Component-Based Synthesis
KIA RAHMANI∗, Purdue University, USA
MOHAMMAD RAZA,Microsoft, USA
SUMIT GULWANI,Microsoft, USA
VU LE,Microsoft, USA
DANIEL MORRIS,Microsoft, USA
ARJUN RADHAKRISHNA,Microsoft, USA
GUSTAVO SOARES,Microsoft, USA
ASHISH TIWARI,Microsoft, USA

Multi-modal program synthesis refers to the task of synthesizing programs (code) from their speci�cation given
in di�erent forms, such as a combination of natural language and examples. Examples provide a precise but
incomplete speci�cation, and natural language provides an ambiguous but more “complete” task description.
Machine-learned pre-trained models (PTMs) are adept at handling ambiguous natural language, but struggle
with generating syntactically and semantically precise code. Program synthesis techniques can generate
correct code, often even from incomplete but precise speci�cations, such as examples, but they are unable to
work with the ambiguity of natural languages. We present an approach that combines PTMs with component-
based synthesis (CBS): PTMs are used to generate candidates programs from the natural language description
of the task, which are then used to guide the CBS procedure to �nd the program that matches the precise
examples-based speci�cation. We use our combination approach to instantiate multi-modal synthesis systems
for two programming domains: the domain of regular expressions and the domain of CSS selectors. Our
evaluation demonstrates the e�ectiveness of our domain-agnostic approach in comparison to a state-of-the-art
specialized system, and the generality of our approach in providing multi-modal program synthesis from
natural language and examples in di�erent programming domains.

CCS Concepts: • Software and its engineering! Automatic programming; • Theory of computation!
Program analysis; Program constructs; • Computing methodologies! Information extraction.

Additional Key Words and Phrases: Program Inference, Natural Language Models, GPT-3

ACM Reference Format:
Kia Rahmani, Mohammad Raza, Sumit Gulwani, Vu Le, Daniel Morris, Arjun Radhakrishna, Gustavo Soares,
and Ashish Tiwari. 2021. Multi-modal Program Inference: A Marriage of Pre-trained Language Models and
Component-Based Synthesis. Proc. ACM Program. Lang. 5, OOPSLA, Article 158 (October 2021), 29 pages.
https://doi.org/10.1145/3485535

∗The �rst author worked on this paper during an internship with the PROSE team at Microsoft.

Authors’ addresses: Kia Rahmani, Department of Computer Science, Purdue University, West Lafayette, Indiana, USA,
rahmank@purdue.edu; Mohammad Raza, Microsoft, USA, moraza@microsoft.com; Sumit Gulwani, Microsoft, USA, sumitg@
microsoft.com; Vu Le, Microsoft, USA, levu@microsoft.com; Daniel Morris, Microsoft, USA, Daniel.Morris@microsoft.com;
Arjun Radhakrishna, Microsoft, USA, arradha@microsoft.com; Gustavo Soares, Microsoft, USA, Gustavo.Soares@microsoft.
com; Ashish Tiwari, Microsoft, USA, astiwar@microsoft.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2021 Copyright held by the owner/author(s).
2475-1421/2021/10-ART158
https://doi.org/10.1145/3485535

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 158. Publication date: October 2021.

• Ablation Study

• Domain of CSS selector

• Optimized use of the PTM

G3T-3 %F6 1LX-C66
0

20

40

60

80

100

AF
FX

ra
Fy

 %

RECAP

52

• PTM: “Rise of AI Language Models in Programming
Automation”

• Multi-modal -> precision

• NLX: component-based synthesis based on results
generated from a PTM

• Domain Agnostic (REGEX and CSS selectors)

• Other domains + general purpose programming

NLX

λ

ACKNOWLEDGMENT

53

PROSE TEAM

microsoft.com/research/group/prose

Mohammad Raza (moraza@microsoft.com)

Sumit Gulwani (sumitg@microsoft.com)

Ashish Tiwari (astiwar@microsoft.com)

Gustavo Soares (Gustavo.Soares@microsoft.com)

Arjun Radhakrishna (arradha@microsoft.com)

Daniel Morris (Daniel.Morris@microsoft.com)

Vu Le (levu@microsoft.com) [1] 10.1145/3385412.3385988

[2] 10.18653/v1/D16-1197

REFERENCES (DOI):

54

THANKS FOR YOUR ATTENTION!

