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- Clustering architectures

‣ Partitioning

‣ Replicating


‣ Weak concurrency guarantees

‣ Programmer is exposed to 

concurrency

‣ Concurrency bugs

‣ prevalent

‣ dangerous

‣ alerted database community

What Are We Doing With Our Lives?

Nobody Cares About Our Concurrency Control Research

Andrew Pavlo
Carnegie Mellon University

pavlo@cs.cmu.edu

ABSTRACT
Most of the academic papers on concurrency control published in
the last five years have assumed the following two design decisions:
(1) applications execute transactions with serializable isolation and
(2) applications execute most (if not all) of their transactions using
stored procedures. I know this because I am guilty of writing these
papers too. But results from a recent survey of database administra-
tors indicates that these assumptions are not realistic. This survey
includes both legacy deployments where the cost of changing the
application to use either serializable isolation or stored procedures
is not feasible, as well as new “greenfield” projects that not encum-
bered by prior constraints. As such, the research produced by our
community is not helping people with their real-world systems and
thus is essentially irrelevant.

In this talk/denouncement, I will descend from my ivory tower
and argue that we need to rethink our agenda for concurrency control
research. Recent trends focus on asking the wrong questions and
solving the wrong problems. I contend that the real issues that
will have the most impact are not easily solved by more “clever”
algorithms. Instead, in many cases, they can only be solved by
hardware improvements and artificial intelligence.
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ACIDRain: Concurrency-Related Attacks on
Database-Backed Web Applications

Todd Warszawski, Peter Bailis
Stanford InfoLab

ABSTRACT
In theory, database transactions protect application data from cor-
ruption and integrity violations. In practice, database transactions
frequently execute under weak isolation that exposes programs to
a range of concurrency anomalies, and programmers may fail to
correctly employ transactions. While low transaction volumes mask
many potential concurrency-related errors under normal operation,
determined adversaries can exploit them programmatically for fun
and profit. In this paper, we formalize a new kind of attack on
database-backed applications called an ACIDRain attack, in which
an adversary systematically exploits concurrency-related vulnerabil-
ities via programmatically accessible APIs. These attacks are not
theoretical: ACIDRain attacks have already occurred in a handful
of applications in the wild, including one attack which bankrupted
a popular Bitcoin exchange. To proactively detect the potential for
ACIDRain attacks, we extend the theory of weak isolation to analyze
latent potential for non-serializable behavior under concurrent web
API calls. We introduce a language-agnostic method for detecting
potential isolation anomalies in web applications, called Abstract
Anomaly Detection (2AD), that uses dynamic traces of database
accesses to efficiently reason about the space of possible concurrent
interleavings. We apply a prototype 2AD analysis tool to 12 popular
self-hosted eCommerce applications written in four languages and
deployed on over 2M websites. We identify and verify 22 critical
ACIDRain attacks that allow attackers to corrupt store inventory,
over-spend gift cards, and steal inventory.

1. INTRODUCTION
For decades, database systems have been tasked with maintaining

application integrity despite concurrent access to shared state [39].
The serializable transaction concept dictates that, if programmers
correctly group their application operations into transactions, appli-
cation integrity will be preserved [34]. This concept has formed the
cornerstone of decades of database research and design and has led
to at least one Turing award [2, 40].

In practice, the picture is less clear-cut. Some databases, in-
cluding Oracle’s flagship offering and SAP HANA, do not offer
serializability as an option at all. Other databases allow applications
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1 def withdraw(amt, user_id): (a)
2 bal = readBalance(user_id)

3 if (bal >= amt):

4 writeBalance(bal � amt, user_id)

1 def withdraw(amt, user_id): (b)
2 beginTxn()

3 bal = readBalance(user_id)

4 if (bal >= amt):

5 writeBalance(bal � amt, user_id)

6 commit()

Figure 1: (a) A simplified example of code that is vulnerable to
an ACIDRain attack allowing overdraft under concurrent ac-
cess. Two concurrent instances of the withdraw function could
both read balance $100, check that $100 � $99, and each allow
$99 to be withdrawn, resulting $198 total withdrawals. (b) Ex-
ample of how transactions could be inserted to address this er-
ror. However, even this code is vulnerable to attack at isolation
levels at or below Read Committed, unless explicit locking such
as SELECT FOR UPDATE is used. While this scenario closely re-
sembles textbook examples of improper transaction use, in this
paper, we show that widely-deployed eCommerce applications
are similarly vulnerable to such ACIDRain attacks, allowing
corruption of application state and theft of assets.

to configure the database isolation level but often default to non-
serializable levels [17, 19] that may corrupt application state [45].
Moreover, we are unaware of any systematic study that examines
whether programmers correctly utilize transactions.

For many applications, this state of affairs is apparently satisfac-
tory. That is, some applications do not require serializable transac-
tions and are resilient to concurrency-related anomalies [18, 26, 48].
More prevalently, many applications do not experience concurrency-
related data corruption because their typical workloads are not highly
concurrent [21]. For example, for many businesses, even a few trans-
actions per second may represent enormous sales volume.

However, the rise of the web-facing interface (i.e., API) leads
to the possibility of increased concurrency—and the deliberate ex-
ploitation of concurrency-related errors. Specifically, given a public
API, a third party can programmatically trigger database-backed
behavior at a much higher rate than normal. This highly concur-
rent workload can trigger latent programming errors resulting from
incorrect transaction usage and/or incorrect use of weak isolation
levels. Subsequently, a determined adversary can systematically
exploit these errors, both to induce data corruption and induce un-
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CLOTHO
(SYMBOLIC PROGRAM ANALYSIS & GUIDED TESTING)
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- Serializability is costly

- Developers forced to use weaker semantics

‣ Transactions are interleaved

‣ Asynchronous replication of data


- Less intuitive behaviors 

Serializability 
Anomalies
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‣ 3 transactions

p_id p_t_id p_role p_stat
PLAYER

t_id t_name p_cnt
TEAM

update TEAM set p_cnt=old_cnt+1 where t_id=t 

addPlayer(p, t)
old_cnt := select p_cnt from TEAM where t_id=t
Insert (p,t,∅,∅) into PLAYER

ps := select * from PLAYER where p_t_id=t
foreach p in ps do
print(p.*)

PlayerByTeam (t)



EXAMPLE (TRANSACTIONS)

44

- Online gaming platform

‣ 2 tables

‣ 3 transactions

p_id p_t_id p_role p_stat
PLAYER

t_id t_name p_cnt
TEAM

update TEAM set p_cnt=old_cnt+1 where t_id=t 

addPlayer(p, t)
old_cnt := select p_cnt from TEAM where t_id=t
Insert (p,t,∅,∅) into PLAYER

ps := select * from PLAYER where p_t_id=t
foreach p in ps do
print(p.*)

PlayerByTeam (t)

setPlayer (p, r, s)
update PLAYER set p_role=r and p_stat=p where p_id=p
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t_id t_name p_cnt
T1 “A” 2

TEAM

Select p_cnt // 2 

… 
Update p_cnt = 3

addPlayer(p=P0, t=T1)

Select p_cnt // 2 

… 
Update p_cnt = 3

addPlayer(p=P0, t=T1)

1 2

3 4

t_id t_name p_cnt
T1 “A” 3

TEAM

Lost Update

“The column ‘p_cnt’ reflects the 
number of players in each team”

Invariant 
Violated!
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- Serializability anomalies are subtle

‣ initial state

‣ transaction arguments

‣ interleaved order

t_id t_name p_cnt
T1 “A” 2

TEAM

Select p_cnt // 2 

… 
Update p_cnt = 3

addPlayer(p=P0, t=T1)

Select p_cnt // 2 

… 
Update p_cnt = 3

addPlayer(p=P0, t=T1)

1 2

3 4

Exponential 
state space!
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App

Bugs

Runtime

- Run and monitor apps in (semi-) 
production environment 
+ real bugs (no false positive) 
- costly  
- too specific 
- no guarantee of coverage 
- manual effort
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- Cloud-based testing framework 

‣ OLTPBench 

‣ Jepsen

W1 W2 Wn

Jepsen

Connection Pool

Cassandra

OLTPBench Load 
Gens.

Cassandra
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- Cloud-based testing framework 

‣ OLTPBench 

‣ Jepsen


- TPC-C Benchmark

‣ 5 txn and 9 tables

NEW_ORDER

STOCK_LEVEL

ORDER_STATUS

PAYMENT

DELIVERY

Orders

Customers

Warehouses
Items

Stocks
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- Cloud-based testing framework 
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- Cloud-based testing framework 

‣ OLTPBench 

‣ Jepsen


- TPC-C Benchmark

‣ 5 txn and 9 tables

‣ 21 application-level invariants

‣ only 14 invariants broken

Invariant Broken?
CR1 Y
CR2 Y
CR3 Y
CR4 Y
CR5A N
CR5B N
CR6 Y
CR7A N
CR7B N
CR8 Y
CR9 Y
CR10 Y
CR11 Y
CR12 Y
NCR1 Y
NCR2 Y
NCR3 N
NCR4 N
NCR5 Y
NCR6 Y
NCR7 N

— KEY IDEA — 
1. Statically analyze programs and find abstract anomalies (white-box testing) 
2. Construct and run anomalous executions to the devs
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RW

UPDATE X

SELECT X   
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- Non-serializable executions in a program, iff     

‣ Cyclic dependencies between txns


- Executions abstracted by directed dependency graphs

- Three types of dependency edges

‣ write dependency (WW)

‣ read dependency (WR)

‣ read anti-dependency (RW)


- Example: lost update
Select p_cnt // 2 

… 
Update p_cnt = 3

addPlayer(p=P0, t=T1)
Select p_cnt // 2 

… 
Update p_cnt = 3

addPlayer(p=P0, t=T1)

1 2

3 4

RW

RW
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- Key idea: reduction to SMT

- Use efficient SMT-solvers, e.g. Z3

- Axiomatic relations encoded within a decidable fragment of FOL

- Finding bounded anomalies against a database abstraction reduced to 

finding satisfying assignments to a formula

- Components of the encoding     

'C

'C⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly
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- Key idea: reduction to SMT

- Use efficient SMT-solvers, e.g. Z3

- Axiomatic relations encoded within a decidable fragment of FOL

- Finding bounded anomalies against a database abstraction reduced to 

finding satisfying assignments to a formula

- Components of the encoding     

'C

'C⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

conditions satisfied by any 
execution of any program

database-specific 
consistency constraints 

Necessary conditions to 
establish a dependency relation

Sufficient conditions to establish 
a dependency relation

Enforces the existence of a 
dependency cycle 
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Managed 
JDBC Driver

Annotated 
Java Code

Test Administrator

Managed 
JDBC Driver

DB Node

Driver

DB Node

Annotated 
Java Code

Driver

Front-end 
Compiler

Encoding 
Engine

SMT Solver

Code 
Annotator

Java Program

Annotated Java 
Program

- Static analysis engine for java programs

- Automatic replay of anomalous executions
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- 7 benchmarks of various complexity analyzed 

- Serializability anomalies found and replayed in 5 benchmark
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- 7 benchmarks of various complexity analyzed 

- Serializability anomalies found and replayed in 5 benchmark

~25m per application (avg)
17 anomalies per application (avg)

# 
AN

O
M

AL
IE

S

0

10

20

30

40

50

60

SEATS
TATP
TPC_C
SmallBank
Voter
Twitter
Wikipedia



CASE STUDY: TPC-C 

84

- 22 anomalies mapped to invariant violations 

‣ All invariants were broken 

‣ Only 3 anomalies did NOT violate any invariant

Invariant Blackbox CLOTHO
CR1 Y Y
CR2 Y Y
CR3 Y Y
CR4 Y Y
CR5A N Y
CR5B N Y
CR6 Y Y
CR7A N Y
CR7B N Y
CR8 Y Y
CR9 Y Y
CR10 Y Y
CR11 Y Y
CR12 Y Y
NCR1 Y Y
NCR2 Y Y
NCR3 N Y
NCR4 N Y
NCR5 Y Y
NCR6 Y Y
NCR7 N Y
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ATROPOS
(REPAIRING REPLICATION ANOMALIES)
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- Serializability anomaly

update TEAM set p_cnt=old_cnt+1 where t_id=t 

addPlayer(p, t)
old_cnt := select p_cnt from TEAM where t_id=t
Insert (p,t,∅,∅) into PLAYER
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- Serializability anomaly

S 

… 
U

S 

… 
Uupdate TEAM set p_cnt=old_cnt+1 where t_id=t 

addPlayer(p, t)
old_cnt := select p_cnt from TEAM where t_id=t
Insert (p,t,∅,∅) into PLAYER RW

t_id t_name p_cnt
T1 “A” 2

TEAM

cross-datacenter edge
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S 

… 
U

S 

… 
U

RW

t_id t_name p_cnt
T1 “A” 2

TEAM

cross-datacenter edge

- Serializability anomaly

- Replication anomalies can be eliminated using consistency annotations

update TEAM set p_cnt=old_cnt+1 where t_id=t 

addPlayer(p, t)

old_cnt := select * from TEAM where t_id=t
Insert (p,t,∅,∅) into PLAYER

Consistent {

}
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update TEAM set p_cnt=old_cnt+1 where t_id=t 

addPlayer(p, t)

old_cnt := select * from TEAM where t_id=t
Insert (p,t,∅,∅) into PLAYER

Consistent {

}

≡

p_id p_t_id p_role p_stat
PLAYER

t_id t_name p_cnt
TEAMTEAM

addPlayer(p, t)

?

? ? ? ?
?

- Serializability anomaly

- Replication anomalies can be eliminated using consistency annotations

- Equivalent program without dependency cycles
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- Equivalent program without dependency cycles

‣ Schema Refactoring

Table A Table BRefactor Schema

• Introduce table

• split table

•merge tables

• duplicate table

TXN2

 

TXN1

TXN2

 

TXN1

Original Application Refactored Application
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- Equivalent program without dependency cycles

‣ Schema Refactoring

‣ Program Refactoring

Table A Table BRefactor Schema

• Introduce table

• split table

•merge tables

• duplicate table

TXN2

 

TXN1

TXN2

 

TXN1

Refactor Program

•Modify operations

•Modify Expressions

Original Application Refactored Application
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t_id t_name p_cnt
TEAM

Refactor

changes to p_cnt

t_id t_name UUID p_cnt_change

unique log 
number

TEAM_P_CNT_LOG

- Equivalent program without dependency cycles

‣ Schema Refactoring

‣ Program Refactoring


- Only keep track of changes to the balance
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t_id t_name UUID p_cnt_change

Insert (t,∅,uuid(),+1) into TEAM_P_CNT_LOG

addPlayer(p, t)
old_cnt := select p_cnt from TEAM where t_id=t
Insert (p,t,∅,∅) into PLAYER

TEAM_P_CNT_LOG

New record is 
inserted for each 

new player

- Equivalent program without dependency cycles

‣ Schema Refactoring

‣ Program Refactoring


- Only keep track of changes to the balance

- No shared item          No dependency
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t_id t_name UUID p_cnt_change
TEAM_P_CNT_LOG

cnt := select SUM(p_cnt_change) 
from TEAM_P_CNT_LOG where t_id=t

cnt := select p_cnt 
from TEAM where t_id=t

t_id t_name p_cnt
TEAM

Refactor

updated expressions to return 
equivalent logical values as 

the original program

- Equivalent program without dependency cycles

‣ Schema Refactoring

‣ Program Refactoring


- Only keep track of changes to the balance

- No shared item          No dependency
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I 
…

I 
…

t_id t_name UUID p_cnt_change
1 “A” U3 2

TEAM_P_CNT_LOG
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t_id t_name UUID p_cnt_change
1 “A” U1 1
1 “A” U3 2
1 “A” U4 1

TEAM_P_CNT_LOG

I 
…

I 
…

t_id t_name UUID p_cnt_change
1 “A” U3 2

TEAM_P_CNT_LOG
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S 

… 
U

S 

… 
U

t_id t_name p_cnt
T1 “A” 2

TEAM

t_id t_name p_cnt
T1 “A” 4

TEAM t_id t_name UUID p_cnt_change
1 “A” U1 1
1 “A” U3 2
1 “A” U4 1

TEAM_P_CNT_LOG

I 
…

I 
…

t_id t_name UUID p_cnt_change
1 “A” U3 2

TEAM_P_CNT_LOG

!
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SOUNDNESS

- Program P’ is a sound refactoring of P iff:
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SOUNDNESS

Sound?

E’

EProgram Schema

Program Schema

Refactor

Equivalent final 
values returned

! !

- Program P’ is a sound refactoring of P iff:

‣ for any execution E’ of P’ there is an execution E of P s.t. 



100

SOUNDNESS

Sound?

E’

EProgram Schema

Program Schema

Refactor

Equivalent final 
values returned

! !

- Program P’ is a sound refactoring of P iff:

‣ for any execution E’ of P’ there is an execution E of P s.t. 

‣ E and E’ preserve the containment relation (    ) between 

initial and final DB states
!
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SOUNDNESS

Sound?

E’

EProgram Schema

Program Schema

Refactor

Equivalent final 
values returned

! !

- Program P’ is a sound refactoring of P iff:

‣ for any execution E’ of P’ there is an execution E of P s.t. 

‣ E and E’ preserve the containment relation (    ) between 

initial and final DB states

‣ equivalent values returned 

!
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EVALUATION (APPLICABILITY + EFFECTIVENESS)

- 9 benchmarks

‣ Number of statically identified anomalous access pairs
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EVALUATION (APPLICABILITY + EFFECTIVENESS)

- 9 benchmarks

‣ Number of statically identified anomalous access pairs
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EVALUATION (PERFORMANCE)

- 3 benchmarks

- Latency and throughput

‣ EC, SC: original program (eventual consistency/serializability)

‣ AT_EC, AT_SC: refactored program (eventual consistency/serializability)
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EVALUATION (PERFORMANCE)

SmallBank
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Serializability is slow!

Refactoring has limited 
overhead — vs original

Refactoring enables performance 
(45% lower latency)

105

- EC, SC: original program + eventual consistency and serializability

- AT_EC, AT_SC: original program + eventual consistency and serializability
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LACHESIS
(REPAIRING PARTITIONING ANOMALIES)
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- Partitioned Database Clusters

‣ Same data-center deployment 
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DC1
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TT T TT T
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- Partitioned Database Clusters

‣ Same data-center deployment 

‣ Subset of records at each node


- Partitioning Policy

‣ Performance 
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DC1
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Program

User

Program

- Partitioned Database Clusters

‣ Same data-center deployment 
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- Partitioned Database Clusters

‣ Same data-center deployment 

‣ Subset of records at each node


- Partitioning Policy

‣ Performance 


- Schism: 

Π

[Curino et.al]

Schism: a Workload-Driven Approach to
Database Replication and Partitioning

Carlo Curino
curino@mit.edu

Evan Jones
evanj@mit.edu

Yang Zhang
yang@csail.mit.edu

Sam Madden
madden@csail.mit.edu

ABSTRACT
We present Schism, a novel workload-aware approach for database
partitioning and replication designed to improve scalability of shared-
nothing distributed databases. Because distributed transactions are
expensive in OLTP settings (a fact we demonstrate through a se-
ries of experiments), our partitioner attempts to minimize the num-
ber of distributed transactions, while producing balanced partitions.
Schism consists of two phases: i) a workload-driven, graph-based
replication/partitioning phase and ii) an explanation and validation
phase. The first phase creates a graph with a node per tuple (or
group of tuples) and edges between nodes accessed by the same
transaction, and then uses a graph partitioner to split the graph into
k balanced partitions that minimize the number of cross-partition
transactions. The second phase exploits machine learning tech-
niques to find a predicate-based explanation of the partitioning strat-
egy (i.e., a set of range predicates that represent the same replica-
tion/partitioning scheme produced by the partitioner).

The strengths of Schism are: i) independence from the schema
layout, ii) effectiveness on n-to-n relations, typical in social net-
work databases, iii) a unified and fine-grained approach to replica-
tion and partitioning. We implemented and tested a prototype of
Schism on a wide spectrum of test cases, ranging from classical
OLTP workloads (e.g., TPC-C and TPC-E), to more complex sce-
narios derived from social network websites (e.g., Epinions.com),
whose schema contains multiple n-to-n relationships, which are
known to be hard to partition. Schism consistently outperforms
simple partitioning schemes, and in some cases proves superior to
the best known manual partitioning, reducing the cost of distributed
transactions up to 30%.

1. INTRODUCTION
The primary way in which databases are scaled to run on multi-

ple physical machines is through horizontal partitioning. By plac-
ing partitions on different nodes, it is often possible to achieve
nearly linear speedup, especially for analytical queries where each
node can scan its partitions in parallel. Besides improving scala-
bility, partitioning can also improve availability, by ensuring that
when one partition fails the remaining partitions are able to an-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

swer some of the transactions, and increase manageability of the
database by enabling rolling upgrades and configuration changes
to be made on one partition at a time.

Although a number of automatic partitioning schemes have been
investigated [1, 23, 18], the mostly widely used approaches are
round-robin (send each successive tuple to a different partition),
range (divide up tuples according to a set of predicates), or hash-
partitioning (assign tuples to partitions by hashing them) [6]. All of
these can be effective for analytical queries that scan large datasets.

Unfortunately, for workloads consisting of small transactions that
touch a few records, none of these approaches is ideal. If more than
one tuple is accessed, then round robin and hash partitioning typi-
cally require access to multiple sites. Executing distributed trans-
actions reduces performance compared to running transactions lo-
cally. Our results in Section 3 show that using local transactions
doubles the throughput. Range partitioning may be able to do a
better job, but this requires carefully selecting ranges which may be
difficult to do by hand. The partitioning problem gets even harder
when transactions touch multiple tables, which need to be divided
along transaction boundaries. For example, it is difficult to parti-
tion the data for social networking web sites, where schemas are
often characterized by many n-to-n relationships.

In this paper, we present Schism, a novel graph-based, data-
driven partitioning system for transactional workloads. Schism rep-
resents a database and its workload using a graph, where tuples
are represented by nodes and transactions are represented by edges
connecting the tuples used within the transaction. We then apply
graph partitioning algorithms to find balanced partitions that mini-
mize the weight of cut edges, which approximately minimizes the
number multi-sited transactions. Schism can be tuned to adjust the
degree to which partitions are balanced in terms of workload or
data size, and is able to create partitions that contain records from
multiple tables.

In addition to this new graph-based approach, Schism makes sev-
eral additional contributions:

• We show that the throughput of executing small distributed
transactions is significantly worse than executing them on a
single node.

• We show that Schism is able to replicate records that are in-
frequently updated. This increases the fraction of transac-
tions that are “single-sited” (go to just one site). Unlike exist-
ing partitioning techniques, this approach is able to replicate
just a portion of a table.

• We present a scheme based on decision trees for identifying
predicates (ranges) that “explain” the partitioning identified
by the graph algorithms.

• We show that Schism’s partitioning times are reasonable for
large datasets. The tool takes on the order of just a few
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- Single-partition access  = Isolated & Atomic

- Eliminate concurrency anomalies by 

program refactoring

- Partitioning-aware symbolic execution
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‣ program P0 (transactions & schema)

‣ partitioning relation
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‣ Isolated { } 

Static Anomaly 
Detection
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- Symbolic analysis engine

‣ program P0 (transactions & schema)

‣ partitioning relation


- Annotation & Runtime 

‣ Isolated { } 

ps := select * from PLAYER 
where p_t_id=t

foreach p in ps do

print(p.*)

PlayerByTeam (t)
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- Symbolic analysis engine

‣ program P0 (transactions & schema)

‣ partitioning relation


- Annotation & Runtime 

‣ Isolated { } 

ps := select * from PLAYER 
where p_t_id=t

foreach p in ps do

print(p.*)

PlayerByTeam (t)

p_id p_t_id p_role p_stat
P0 T1 captain on
P1 T1 soldier on
P2 T2 soldier off

PLAYER

I
II
III
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- Symbolic analysis engine

‣ program P0 (transactions & schema)

‣ partitioning relation


- Annotation & Runtime 

‣ Isolated { } 

ps := select * from PLAYER 
where p_t_id=t

foreach p in ps do

print(p.*)

PlayerByTeam (t)

p_id p_t_id p_role p_stat
P0 T1 captain on
P1 T1 soldier on
P2 T2 soldier off

PLAYER

I
II
III

… 
Select P0 

Select P1 
…

playerByTeam (t=T1)
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- Symbolic analysis engine

‣ program P0 (transactions & schema)

‣ partitioning relation


- Annotation & Runtime 

‣ Isolated { } 

ps := select * from PLAYER 
where p_t_id=t

foreach p in ps do

print(p.*)

PlayerByTeam (t)

p_id p_t_id p_role p_stat
P0 T1 captain on
P1 T1 soldier on
P2 T2 soldier off

PLAYER

I
II
III

… 
Select P0 

Select P1 
…

playerByTeam (t=T1)

Set P0 to soldier
setPlayer (p=P0, r=soldier)

Set P1 to captain
setPlayer (p=P1, r=captain)

User
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- Symbolic analysis engine

‣ program P0 (transactions & schema)

‣ partitioning relation


- Annotation & Runtime 

‣ Isolated { } 

ps := select * from PLAYER 
where p_t_id=t

foreach p in ps do

print(p.*)

PlayerByTeam (t)

p_id p_t_id p_role p_stat
P0 T1 captain on
P1 T1 soldier on
P2 T2 soldier off

PLAYER
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III

… 
Select P0 

Select P1 
…

playerByTeam (t=T1)

Set P0 to soldier
setPlayer (p=P0, r=soldier)
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setPlayer (p=P1, r=captain)
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- Symbolic analysis engine

‣ program P0 (transactions & schema)

‣ partitioning relation


- Annotation & Runtime 

‣ Isolated { } 

ps := select * from PLAYER 
where p_t_id=t

foreach p in ps do

print(p.*)

PlayerByTeam (t)

… 
Select P0 

Select P1 
…

playerByTeam (t=T1)

Set P0 to soldier
setPlayer (p=P0, r=soldier)

Set P1 to captain
setPlayer (p=P1, r=captain)

User

I

II

1
2

34

p_id p_t_id p_role p_stat
P0 T1 captain on
P1 T1 soldier on
P2 T2 soldier off

PLAYER

I
II
III

// P0, 1, captain, on

// P1, 1, captain, on

Invariant 
Violated!
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ps := select * from PLAYER 
where p_t_id=t

foreach p in ps do

print(p.*)

PlayerByTeam (t)

ps := select * from PLAYER 
where p_t_id=t

foreach p in ps do
print(p.*)

PlayerByTeam (t)

Isolated {

}

Static Anomaly 
Detection

P0

P1 (annotated)


Π

- Symbolic analysis engine

‣ program P0 (transactions & schema)

‣ partitioning relation


- Annotation & Runtime 

‣ Isolated { } 
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Static Anomaly 
Detection

P0

P1 (annotated)


Π

Partitioning 
Recommender

- Symbolic analysis engine

‣ program P0 (transactions & schema)

‣ partitioning relation


- Annotation & Runtime 

‣ Isolated { } 


- Partitioning Recommendation

‣ Static & efficient

‣ Comparable to Schism  
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- Recommended partitioning policy:

p_id p_t_id p_role p_stat
P0 T1 captain on
P1 T1 soldier on
P2 T2 soldier off

PLAYER

I

II
I

Set P0 to soldier

Set P1 to captain

Select P0 

Select P1

// P0, 1, captain, on

// P1, 1, soldier, on

1

2

3

4

playerByTeam

setPlayer

setPlayer

∀r, r′. r.p t id = r
′
.p t id ⇒ (r, r′) ∈ Πe
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- Recommended partitioning policy:

p_id p_t_id p_role p_stat
P0 T1 captain on
P1 T1 soldier on
P2 T2 soldier off

PLAYER

I

II
I

∀r, r′. r.p t id = r
′
.p t id ⇒ (r, r′) ∈ Πe

// P0, 1, soldier, on

// P1, 1, captain, on

Set P0 to soldier

Set P1 to captain

Select P0 

Select P1

1

2

3
4

playerByTeam

setPlayer

setPlayer
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- Recommended partitioning policy:

∀r, r′. r.p t id = r
′
.p t id ⇒ (r, r′) ∈ Πe

ps := select * from PLAYER 
where p_t_id=t

foreach p in ps do
print(p.*)

PlayerByTeam (t)

Isolated { ps := select * from PLAYER 
where p_t_id=t

foreach p in ps do

print(p.*)

PlayerByTeam (t)

After 
partitioning 
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- Recommended partitioning policy:


- Partitioning eliminates annotations

- Annotations are costly

- 40% fewer annotations:

‣ average of 23% higher throughput  & 14% lower latency

∀r, r′. r.p t id = r
′
.p t id ⇒ (r, r′) ∈ Πe
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- Each table is 

‣ partitioned for one access pattern


- Conflicting access patterns? 

- ∀r, r′. r.p t id = r

′
.p t id ⇒ (r, r′) ∈ Πe
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- Each table is 

‣ partitioned for one access pattern


- Conflicting access patterns? 

- ∀r, r′. r.p t id = r

′
.p t id ⇒ (r, r′) ∈ Πe

p_id p_t_id p_role p_stat
P0 T1 captain on
P1 T1 soldier on
P2 T2 soldier off

PLAYER

I

II
I

p_id p_t_id p_role p_stat
P0 T1 captain on
P1 T1 soldier on
P2 T2 soldier off

PLAYER

II
I
II

A1 A2
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- Refactor the schema: 

‣ A new table for each anomalous 

access pattern

‣ Rewrite program

‣ Repartition

Static Anomaly 
Detection

P0

P1 (annotated)


Π

Denormalization 
Engine

Partitioning 
Recommender
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g_id g_stat g_min_player
GAME

g_id p_id
GAME ⋈ PLAYER

GAME PLAYER

m-m

- Running example:

‣ additional three tables

p_id p_t_id p_role p_stat
PLAYER
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g_id g_stat g_min_player
GAME

g_id p_id
GAME ⋈ PLAYER

playerByGame (g)

ids := select p_id from G⋈P where g_id=g

foreach id in ids do

p := select * from PLAYER where p_id=id

print(p.*)

print(game.*)
Game := select * from GAME where g_id=g

GAME PLAYER

m-m

- Running example:

‣ additional three tables

‣ additional one transaction

p_id p_t_id p_role p_stat
PLAYER
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playerByGame (g)

ids := select p_id from G⋈P where g_id=g

foreach id in ids do

p := select * from PLAYER where p_id=id

print(p.*)

print(game.*)
Game := select * from GAME where g_id=g- Running example:


‣ additional three tables

‣ additional one transaction


- Anomaly is not fixed  
by partitioning

p_id p_t_id p_role p_stat
P0 1 soldier on
P1 1 captain on
P2 2 captain
 off

PLAYER

III
III
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playerByGame (g)

ids := select p_id from G⋈P where g_id=g

foreach id in ids do

p := select * from PLAYER where p_id=id

print(p.*)

print(game.*)
Game := select * from GAME where g_id=g- Running example:


‣ additional three tables

‣ additional one transaction


- Anomaly is not fixed  
by partitioning

p_id p_t_id p_role p_stat
P0 1 soldier on
P1 1 captain on
P2 2 captain
 off

PLAYER

III
III



EXAMPLE

137

playerByGame (g)

ids := select p_id from G⋈P where g_id=g

foreach id in ids do

p := select * from PLAYER where p_id=id

print(p.*)

print(game.*)
Game := select * from GAME where g_id=g- Running example:


‣ additional three tables

‣ additional one transaction


- Anomaly is not fixed  
by partitioning

p_id p_t_id p_role p_stat
P0 1 soldier on
P1 1 captain on
P2 2 captain
 off

PLAYER

III
III PLAYER_BY_GAME

g_id p_id p_t_id p_role p_stat
G1 P0 1 soldier on
G1 P2 2 captain
 off

I
I
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g_id g_stat g_min_player
G1 active 2

GAME

p_id p_t_id p_role p_stat
P0 1 soldier on
P1 1 captain on
P2 2 captain
 off

PLAYER

- Running example:

‣ additional three tables

‣ additional one transaction


- Anomaly is not fixed  
by partitioning

playerByGame (g)

ids := select p_id from G⋈P where g_id=g

foreach id in ids do

p := select * from PLAYER_BY_GAME 
where p_id=id

print(p.*)

print(game.*)
Game := select * from GAME where g_id=g

PLAYER_BY_GAME
g_id p_id p_t_id p_role p_stat
G1 P0 1 soldier on
G1 P2 2 captain
 off

!



IMPLEMENTATION & EMPIRICAL RESULTS

139

- ZooKeeper runtime

- 11 Benchmarks 
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2
4
6
8

10
12
14
16
18

TPCC

SEATS

SmallBank

Twitter

FMKe

Courseware
Killrchat
Wikipedia

RUBiS

eCart

HealthPlus

Original Annot.
Repartition Annot.
Denormalized Annot.

- ZooKeeper runtime

- 11 Benchmarks

- Number of annotations 

‣ 40% reduction

‣ Additional 32% reduction 

# Annotated 
Blocks
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- ZooKeeper runtime

- 11 Benchmarks

- Number of annotations 

‣ 40% reduction

‣ Additional 32% reduction


- Lower latency + Higher throughput

TPC-C benchmark
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concurrency semantics. 


- The developers have a hard time reasoning about programs.

- A symbolic program analysis engine to identify and report undesirable 
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- By analyzing the access patterns of the database program, the program can 

be rewritten to be optimized for deployment on a particular clustering 
architecture.
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- Modern database systems come with a plethora of complex and subtle 
concurrency semantics. 


- The developers have a hard time reasoning about programs.

- A symbolic program analysis engine to identify and report undesirable 

behaviors from a given database program

- By analyzing the access patterns of the database program, the program can 

be rewritten to be optimized for deployment on a particular clustering 
architecture.


- We report results from empirical experiments to support our claims. 
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