OOPSLA 2019

OCT 25, 2019

CLOTHO: DIRECTED TEST GENERATION FOR
WEAKLY CONSISTENT DAIABASE SYSTEMS

Benjamin Delaware

Kia Rahmani
Kartik Nagar

TRADITIONAL DATABASE PROGRAMMING

» Transactional support

Database Program

TRADITIONAL DATABASE PROGRAMMING

» Transactional support

» Highly structured relational data

Database Program

Database

TRADITIONAL DATABASE PROGRAMMING

Transactional support
> PP Database Program

TXN TXN

» Highly structured relational data

» Clients invoke transactions

Database

TRADITIONAL DATABASE PROGRAMMING

» Transactional support
» Highly structured relational data
» Clients invoke transactions

» Structured query language for
data retrieval/modification

Database Program

Database

TRADITIONAL DATABASE PROGRAMMING

» Transactional support
» Highly structured relational data
» Clients invoke transactions

» Structured query language for
data retrieval/modification

» Queries processed and
responded by the DBMS

Database Program

Database

\

TRADITIONAL DATABASE PROGRAMMING

» ACID guarantees

TRADITIONAL DATABASE PROGRAMMING

» ACID guarantees
» Atomicity

TXN

TRADITIONAL DATABASE PROGRAMMING

» ACID guarantees
» Atomicity

TXN
UPDATE

UPDATE
UPDATE

TRADITIONAL DATABASE PROGRAMMING

» ACID guarantees
» Atomicity

TXN

IIDNATE

IPNATE
UPDATE

TRADITIONAL DATABASE PROGRAMMING

» ACID guarantees
» Atomicity

TXN

IIDNATE

IPNATE
UPDATE

“All or None”

TRADITIONAL DATABASE PROGRAMMING

TXN

» ACID guarantees
» Atomicity
» Consistency

TXN

TXN

TRADITIONAL DATABASE PROGRAMMING

TXN

» ACID guarantees
» Atomicity
» Consistency

TXN

—
N—

“Single Copy of Data”

TRADITIONAL DATABASE PROGRAMMING

» ACID guarantees
» Atomicity
» Consistency
» Isolation

execution order

TRADITIONAL DATABASE PROGRAMMING

» ACID guarantees
» Atomicity
» Consistency
» Isolation

execution order

TRADITIONAL DATABASE PROGRAMMING

» ACID guarantees
» Atomicity
» Consistency
» Isolation

TXN

execution order

TRADITIONAL DATABASE PROGRAMMING

» ACID guarantees
» Atomicity
» Consistency
» Isolation

TXN

TXN

execution order

TRADITIONAL DATABASE PROGRAMMING

» ACID guarantees
» Atomicity
» Consistency
» Isolation

TXN

“No Interference”

TXN

execution order

TRADITIONAL DATABASE PROGRAMMING

» ACID guarantees
» Atomicity
» Consistency
» Isolation
» Durability

TXN

TRADITIONAL DATABASE PROGRAMMING

» ACID guarantees
» Atomicity
» Consistency
» Isolation
» Durability

“Permanent Commits”

SERIALIZABILITY GUARANTEES

» ACID guarantees
p Atomicity
» Consistency
» Isolation
» Durability

» Serializability

SERIALIZABILITY GUARANTEES

» ACID guarantees
p Atomicity
» Consistency
» Isolation
» Durability

» Serializability facilitates
program design and reasoning

SERIALIZABILITY GUARANTEES

» ACID guarantees
p Atomicity
» Consistency
» Isolation
» Durability

» Serializability facilitates
program design and reasoning

SERIALIZABILITY GUARANTEES

» ACID guarantees

p Atomicity
i TXN (arg)
» Consistency
Isolati SELECT pay_cnt AS v
0 I(-)-n WHERE id=arg
> Durability UPDATE pay_cnt=v+1
WHERE id=arg

» Serializability facilitates
program design and reasoning

SERIALIZABILITY GUARANTEES

» ACID guarantees
p Atomicity
» Consistency
» Isolation
» Durability

» Serializability facilitates
program design and reasoning

TXN (arg)

SELECT pay_cnt AS v
WHERE id=arg

UPDATE pay_cnt=v+1
WHERE id=arg

TXN (arg)

SELECT pay_cnt AS v
WHERE id=arg

UPDATE pay_cnt=v+1
WHERE id=arg

SERIALIZABILITY GUARANTEES

» ACID guarantees
p Atomicity
» Consistency
» Isolation
» Durability

» Serializability facilitates
program design and reasoning

id

pay_cnt

TXN (arg)

SELECT pay_cnt AS v
WHERE id=arg

UPDATE pay_cnt=v+1
WHERE id=arg

TXN (arg)

SELECT pay_cnt AS v
WHERE id=arg

UPDATE pay_cnt=v+1
WHERE id=arg

execution order

SERIALIZABILITY GUARANTEES

» ACID guarantees
p Atomicity
» Consistency
» Isolation
» Durability

» Serializability facilitates
program design and reasoning

id

pay_cnt

TXN (arg)

SELECT pay_cnt AS v
WHERE id=arg

UPDATE pay_cnt=v+1
WHERE id=arg

0

TXN (arg)

SELECT pay_cnt AS v
WHERE id=arg

UPDATE pay_cnt=v+1
WHERE id=arg

execution order

SERIALIZABILITY GUARANTEES

» ACID guarantees
p Atomicity
» Consistency
» Isolation
» Durability

» Serializability facilitates
program design and reasoning

id [pay_cnt
1 0 TXN (arg)
o> SELECT pay_cnt AS v
WHERE id=arg

UPDATE pay_cnt=v+1
1T WHERE id=arg

TXN (arg)

SELECT pay_cnt AS v
WHERE id=arg

UPDATE pay_cnt=v+1
WHERE id=arg

execution order

SERIALIZABILITY GUARANTEES

» ACID guarantees
p Atomicity
» Consistency
» Isolation
» Durability

» Serializability facilitates
program design and reasoning

id [pay_cnt
1 0
id | pay_cnt

TXN (arg)

SELECT pay_cnt AS v
WHERE id=arg

UPDATE pay_cnt=v+1
WHERE id=arg

TXN (arg)

SELECT pay_cnt AS v
WHERE id=arg

UPDATE pay_cnt=v+1
WHERE id=arg

execution order

SERIALIZABILITY GUARANTEES

» ACID guarantees
p Atomicity
» Consistency
» Isolation
» Durability

» Serializability facilitates
program design and reasoning

id [pay_cnt
1 0 TXN (arg)
o> SELECT pay_cnt AS v
WHERE id=arg
UPDATE pay_cnt=v+1
1 WHERE id=arg
id | pay_cnt

TXN (arg)

SELECT pay_cnt AS v
WHERE id=arg

UPDATE pay_cnt=v+1
WHERE id=arg

1

execution order

SERIALIZABILITY GUARANTEES

» ACID guarantees
p Atomicity
» Consistency
» Isolation
» Durability

» Serializability facilitates
program design and reasoning

id [pay_cnt
1 0 TXN (arg)
o> SELECT pay_cnt AS v
WHERE id=arg
UPDATE pay_cnt=v+1
1 WHERE id=arg
id | pay_cnt

TXN (arg)

SELECT pay_cnt AS v
WHERE id=arg

2 UPDATE pay_cnt=v+1
WHERE id=arg

1

execution order

SERIALIZABILITY GUARANTEES

» ACID guarantees
p Atomicity
» Consistency
» Isolation
» Durability

» Serializability facilitates
program design and reasoning

id [pay_cnt
1 0
id | pay_cnt
1 1
id [pay_cnt
1 2

TXN (arg)

SELECT pay_cnt AS v
WHERE id=arg

UPDATE pay_cnt=v+1
1T WHERE id=arg

0

TXN (arg)

1, SELECT pay_cnt AS v
WHERE id=arg

2 UPDATE pay_cnt=v+1
WHERE id=arg

execution order

SERIALIZABILITY GUARANTEES

» ACID guarantees
p Atomicity
» Consistency
» Isolation
» Durability

» Serializability facilitates
program design and reasoning

SERIALIZABILITY GUARANTEES

» ACID guarantees
p Atomicity
» Consistency
» Isolation
» Durability

» Serializability facilitates
program design and reasoning

» Requires heavy synchronization

SERIALIZABILITY GUARANTEES

» ACID guarantees
» Atomicity
» Consistency
» Isolation
» Durability

» Serializability facilitates
program design and reasoning

» Requires heavy synchronization

SERIALIZABILITY GUARANTEES

» ACID guarantees
» Atomicity
» Consistency
» Isolation
» Durability

» Serializability facilitates
program design and reasoning

» Requires heavy synchronization

Unacceptable cost
for web-scale
applications

SERIALIZABILITY GUARANTEES

» ACID guarantees
p Atomicity
» Consistency
» Isolation
» Durability

Not Isolated!

» Serializability facilitates
program design and reasoning

» Requires heavy synchronization Witness
each other’s

presence!

» Weaker guarantees are offered in
favor of higher performance

EXAMPLE: A SERIALIZABILITY ANOMALY

EXAMPLE: A SERIALIZABILITY ANOMALY

» Unexpected behaviors
can occur under weak
guarantees

EXAMPLE: A SERIALIZABILITY ANOMALY

) TXN (arg)
. id | pay_cnt
» Unexpected behaviors 1 0 SELECT pay_cnt AS v
can occur under weak WHERE id=arg

guarantees

UPDATE pay_cnt=v+1
WHERE id=arg

TXN (arg)

SELECT pay_cnt AS v
WHERE id=arg

UPDATE pay_cnt=v+1
WHERE id=arg

execution order

EXAMPLE: A SERIALIZABILITY ANOMALY

id | pay_cnt
» Unexpected behaviors 1 .
can occur under weak TXN (arg)
guarantees SELECT pay_cnt AS v
TXN (arg) WHERE id=arg

SELECT pay_cnt AS v
WHERE id=arg

UPDATE pay_cnt=v+1
WHERE id=arg

UPDATE pay_cnt=v+1
WHERE id=arg

execution order

EXAMPLE: A SERIALIZABILITY ANOMALY

id | pay_cnt
» Unexpected behaviors 1 .
can occur under weak TXN (arg)
guarantees - SELECT pay_cnt AS v
TXN (arg) WHERE id=arg

SELECT pay_cnt AS v
WHERE id=arg

UPDATE pay_cnt=v+1
WHERE id=arg

UPDATE pay_cnt=v+1
WHERE id=arg

execution order

EXAMPLE: A SERIALIZABILITY ANOMALY

id | pay_cnt
» Unexpected behaviors 1 .
can occur under weak TXN (arg)
guarantees - SELECT pay_cnt AS v
TXN (arg) WHERE id=arg

SELECT pay_cnt AS v 0
WHERE id=arg

UPDATE pay_cnt=v+1
WHERE id=arg

UPDATE pay_cnt=v+1
WHERE id=arg

execution order

EXAMPLE: A SERIALIZABILITY ANOMALY

id | pay_cnt

» Unexpected behaviors
can occur under weak
guarantees

TXN (arg)

SELECT pay_cnt AS v

TXN (arg) WHERE id=arg

SELECT pay_cnt AS v
WHERE id=arg

UPDATE pay_cnt=v+1
WHERE id=arg

UPDATE pay_cnt=v+1
WHERE id=arg

execution order

EXAMPLE: A SERIALIZABILITY ANOMALY

id | pay_cnt

» Unexpected behaviors
can occur under weak
guarantees

TXN (arg)

SELECT pay_cnt AS v

TXN (arg) WHERE id=arg

SELECT pay_cnt AS v
WHERE id=arg

UPDATE pay_cnt=v+1
WHERE id=arg

UPDATE pay_cnt=v+1
WHERE id=arg

1

execution order

EXAMPLE: A SERIALIZABILITY ANOMALY

id | pay_cnt
» Unexpected behaviors 1 .
can occur under weak TXN (arg)
guarantees - SELECT pay_cnt AS v
TXN (arg) WHERE id=arg

SELECT pay_cnt AS v 0
WHERE id=arg

UPDATE pay_cnt=v+1
1 WHERE id=arg

UPDATE pay_cnt=v+1 4
WHERE id=arg

id [pay_cnt

execution order

EXAMPLE: A SERIALIZABILITY ANOMALY

» Unexpected behaviors
can occur under weak
guarantees

» Assumed program
invariants can be violated

WEAKLY CONSISTENT REPLICATED DATABASE SYSTEMS

WEAKLY CONSISTENT REPLICATED DATABASE SYSTEMS

» Data is geo-replicated in
highly-available DBMSs

WEAKLY CONSISTENT REPLICATED DATABASE SYSTEMS

» Data is geo-replicated in
highly-available DBMSs

» Worldwide synchronization
is extremely costly

WEAKLY CONSISTENT REPLICATED DATABASE SYSTEMS
» Data is geo-replicated in

highly-available DBMSs

» Worldwide synchronization
is extremely costly

» Strongly synchronized data
cannot be available

| Loosely |
| Synched!|

WEAKLY CONSISTENT REPLICATED DATABASE SYSTEMS

» Data is geo-replicated in
highly-available DBMSs

» Worldwide synchronization
is extremely costly

» Strongly synchronized data
cannot be available

aﬂntlboteDB

WEAKLY CONSISTENT REPLICATED DATABASE SYSTEMS

» Data is geo-replicated in
highly-available DBMSs

» Worldwide synchronization
is extremely costly

» Strongly synchronized data
cannot be available

» Weak consistency semantics
are very popular

GﬂntlboteDB

WEAKLY CONSISTENT REPLICATED DATABASE SYSTEMS

» Data is geo-replicated in
highly-available DBMSs

» Worldwide synchronization
is extremely costly

» Strongly synchronized data
cannot be available

Database Default Maximum
Actian Ingres 10.0/10S [1] S S
Aerospike [2] RC RC
Akiban Persistit [3] SI SI
Clustrix CLX 4100 [4] RR RR
Greenplum 4.1 [8] RC S
IBM DB2 10 for z/OS [5] CS S
IBM Informix 11.50 [9] Depends S
MySQL 5.6 [12] RR S
MemSQL 1b [10] RC RC
MS SQL Server 2012 [11] RC S
NuoDB [13] CR CR
Oracle 11g [14] RC SI
Oracle Berkeley DB [7] S S
Oracle Berkeley DB JE [6] RR S
Postgres 9.2.2 [15] RC S
SAP HANA [16] RC SI
ScaleDB 1.02 [17] RC RC
VoltDB [18] S S

RC: read committed, RR: repeatable read, SI: snapshot isola-

tion, S: serializability, CS: cursor stability, CR: consistent read

WEAKLY CONSISTENT REPLICATED DATABASE SYSTEMS

» Data is geo-replicated in
highly-available DBMSs

» Worldwide synchronization
is extremely costly

» Strongly synchronized data
cannot be available

» Weak consistency semantics
are very popular

» Serializabiliabity is rarely
assumed by default

Database Default Maximum
Actian Ingres 10.0/10S [1] S S
Aerospike [2] RC RC
Akiban Persistit [3] SI SI
Clustrix CLX 4100 [4] RR RR
Greenplum 4.1 [8] RC S
IBM DB2 10 for z/OS [5] CS S
IBM Informix 11.50 [9] Depends S
MySQL 5.6 [12] RR S
MemSQL 1b [10] RC RC
MS SQL Server 2012 [11] RC S
NuoDB [13] CR CR
Oracle 11g [14] RC SI
Oracle Berkeley DB [7] S S
Oracle Berkeley DB JE [6] RR S
Postgres 9.2.2 [15] RC S
SAP HANA [16] RC SI
ScaleDB 1.02 [17] RC RC
VoltDB [18] S S

[Bailis et.al]

RC: read committed, RR: repeatable read, SI: snapshot isola-

tion, S: serializability, CS: cursor stability, CR: consistent read

TESTING: FUNDAMENTAL CHALLENGES

TESTING: FUNDAMENTAL CHALLENGES

» Triggering anomalies
requires determining
many parameters

TESTING: FUNDAMENTAL CHALLENGES

» Triggering anomalies
requires determining
many parameters

id | pay_cnt

TXN (arg)

SELECT pay_cnt AS v
WHERE id=arg

UPDATE pay_cnt=v+1
WHERE id=arg

TXN (arg)

SELECT pay_cnt AS v
WHERE id=arg

UPDATE pay_cnt=v+1
WHERE id=arg

execution order

TESTING: FUNDAMENTAL CHALLENGES

: : : id ay_cnt
» Triggering anomalies ; © y(;
requires determining

many parameters

» Initial database state TXN (arg) TXN (arg)
SELECT pay_cnt AS v SELECT péy_cnt AS v
WHERE id=arg WHERE id=arg
UPDATE pay_cnt=v+1 UPDATE pay_cnt=v+1
WHERE id=arg WHERE id=arg

execution order

TESTING: FUNDAMENTAL CHALLENGES

: : : id t
» Triggering anomalies | pay(;cn
requires determining
many parameters
» Initial database state TXN (arg) //arg=1 TXN (arg) //arg=1
» Input arguments SELECT pay_cnt AS v SELECT pay_cnt AS v
WHERE id=arg WHERE id=arg
UPDATE pay_cnt=v+1 UPDATE pay_cnt=v+1
WHERE id=arg WHERE id=arg

execution order

TESTING: FUNDAMENTAL CHALLENGES

id | pay_cnt

» Triggering anomalies
requires determining
many parameters

TXN (arg) //arg=1
SELECT pay_cnt AS v

» Initial database state TXN (arg) //arg=1 WHERE id=arg
» Input arguments SELECT pay_cnt AS v
» Execution order WHERE id=arg

UPDATE pay_cnt=v+1
WHERE id=arg

UPDATE pay_cnt=v+1
WHERE id=arg

execution order

TESTING: FUNDAMENTAL CHALLENGES

: : . id ay_cnt
» Triggering anomalies '1 : yO TXN (arg) //arg=1

requires determining
many parameters > E/\L/EICI;TREP ?;':;?;AS v
» Initial database state
» Input arguments
» Execution order

UPDATE pay cnt=v+1

//arg=1 Pay_
> Network de|ays TXN (arg) J r WHERE id=ar
=arg
SELECT pay_cnt AS v 0
WHERE id=arg

UPDATE pay_cnt=v+1 4
WHERE id=arg

execution order

TESTING: FUNDAMENTAL CHALLENGES

id [pay_cnt

» Triggering anomalies
requires determining
many parameters

TXN (arg) //arg=1

SELECT pay_cnt AS v
WHERE id=arg

» Initial database state

» Input arguments
» Execution order

» Network delays TXN (arg) //arg=1 W
0

UPDATE pay_cnt=v+1

1 WHERE id=arg
SELECT pay_cnt AS v

WHERE id=arg

UPDATE pay_cnt=v+1 4
WHERE id=arg

execution order

TESTING: FUNDAMENTAL CHALLENGES

» Triggering anomalies
requires determining
many parameters

» Initial database state

» Input arguments |
» Execution order Exponentlal

» Network delays state space!

BLACKBOX TESTING

BLACKBOX TESTING

» Independent of application
semantics

HOTEL
RESERVATION ONLINE SHOP

BLACKBOX TESTING

» Independent of application
semantics

HOTEL
RESERVATION ONLINE SHOP

» Independent of database
specific guarantees

aa» E- T —
=

BLACKBOX TESTING

» Independent of application

semantics OTEL
RESERVATION ONLINE SHOP
» Independent of database \ . _

specific guarantees \A}' /

» Not reproducible K
e

SIS
-

cALVIN I cassanoma MONGODB

BLACKBOX TESTING

» Independent of application
semantics

HOTEL
RESERVATION
» Independent of database \ :
specific guarantees \A

» Not reproducible

ONLINE SHOP

» Each database may offer

multiple guarantees
POSTGRESQL CASSANDRA MONGODB

\

RR RC PSI EC CC RMW EC EC CC

BLACKBOX TESTING

» Independent of application
semantics

HOTEL
RESERVATION ONLINE SHOP

» Independent of database
specific guarantees

Do

>
IS
"\

MONGODB

» Not reproducible

<

» Each database may offer

multiple guarantees
POSTGRESOL CASSANDRA

» Time and resource
consuming!

\

RR RC PSI EC CC RMW EC EC CC

BLACKBOX TESTING

» Independent of application
semantics

HOTEL
RESERVATION ONLINE SHOP

» Independent of database
specific guarantees

Do

>
IS
"\

MONGODB

» Not reproducible

<

» Each database may offer

multiple guarantees
POSTGRESOL CASSANDRA

» Time and resource
consuming!

\

RR RC PSI EC CC RMW EC EC CC

» No guarantees

BLACKBOX TESTING IN ACTION

» State of the art cloud-based
testing framework using

Jepsen and OLTPBench

Connection Pool
2

BLACKBOX TESTING IN ACTION

» State of the art cloud-based
testing framework using

Jepsen and OLTPBench
» TPC-C benchmark

BLACKBOX TESTING IN ACTION

» State of the art cloud-based
testing framework using

Jepsen and OLTPBench
» TPC-C benchmark

Warehouses

)

ltems

Orders

Stocks

Customers

BLACKBOX TESTING IN ACTION

» State of the art cloud-based

testing framework using NEW_ORDER STOCK_LEVEL PAYMENT
Jepsen and OLTPBench
ORDER_STATUS DELIVERY

» TPC-C benchmark

Warehouses

)

ltems
Orders

\a Stocks

Customers

BLACKBOX TESTING IN ACTION

» State of the art cloud-based vt
testing framework using CR2
Jepsen and OLTPBench crs

» TPC-C benchmark ren

CR6

» 21 application-level invariants CR7A

CR7B

were analyzed oK

CR9

CR10

CR11

CR12

NCR1

NCR2

NCR3

NCR4

NCRS5

NCR6

NCR7

BLACKBOX TESTING IN ACTION

» State of the art cloud-based eriant S
testing framework using cR2
Jepsen and OLTPBench cr3

CR5A

» TPC-C benchmark e

CR6
» 21 application-level invariants CR7A

CR7B
CR8
CR9

» Only 14 out of 21 invariants CR10

were broken at best §§1;

NCR1
NCR2
NCR3
NCR4
NCR5
NCR6
NCR7

were analyzed

1/3 of invariants
are assumed to
be preserved

WHITE-BOX ANALYSIS

WHITE-BOX ANALYSIS

» Systematic assessment of
anomalous executions within
a given program

WHITE-BOX ANALYSIS

» Systematic assessment of

anomalous executions within TxN (arg) TXN (arg)
4 given program SELECT pay_cnt AS v SELECT pay_cnt AS v
WHERE id=arg WHERE id=arg
UPDATE pay_cnt=v+1 UPDATE pay_cnt=v+1

WHERE id=arg WHERE id=arg

WHITE-BOX ANALYSIS

» Systematic assessment of

anomalous executions within TXN (arg)
@ given program SELECT pay_cnt AS v SELECT pay_cnt AS v
» Data dependencies among WHERE id=arg WHERE id=arg

database operations

UPDATE pay_cnt=v+1
WHERE id=arg

PDATE pay_cnt=v+1
WHERE id=arg

WHITE-BOX ANALYSIS

» Systematic assessment of
anomalous executions within
a given program

SELECT pay_cnt AS v
WHERE id=arg

Does NOT witness
the update

» Data dependencies among
database operations UPDATE pay_cnt=v+1

, , WHERE id=arg
» Execution properties (e.q.

order) affect dependent
operations

TXN (arg)

SELECT pay_cnt AS v
WHERE id=arg

UPDATE pay_cnt=v+1
WHERE id=arg

WHITE-BOX ANALYSIS

» Systematic assessment of
anomalous executions within
a given program

» Data dependencies among
database operations

» Execution properties (e.q.
order) affect dependent
operations

TXN (arg)

SELECT pay_cnt AS v
WHERE id=arg

UPDATE pay_cnt=v+1

WHERE id=arg
TXN (g

SELECT pay_cnt AS v
WHERE id=arg

Witnesses the update

UPDATE pay_cnt=v+1
WHERE id=arg

WHITE-BOX ANALYSIS

Does NOT witnhess Does NOT witnhess
» Systematic assessment of the update the update
anomalous executions within
a given program TXN (arc

SELECT pay_cnt AS v
WHERE id=arg

SELECT pay_cnt AS v
WHERE id=arg

» Data dependencies among
database operations

» Execution properties (e.q.
order) affect dependent

operations UPDATE pay_cnt=v+1

WHERE id=arg

UPDATE pay_cnt=v+1
WHERE id=arg

» Cyclic dependencies
between transactions
correspond to anomalous
executions

WHITE-BOX ANALYSIS

» Systematic assessment of
anomalous executions within
a given program

» Data dependencies among Goal: statically construct valid
database operations ‘
execution and database
» Execution properties (e.q. . o o
order) affect dependent instances with CYC'IC
operations dependencies

» Cyclic dependencies
between transactions
correspond to anomalous
executions

FORMAL EXECUTION MODEL

FORMAL EXECUTION MODEL

» Transactions are arbitrarily invoked

FORMAL EXECUTION MODEL

» Transactions are arbitrarily invoked

TXN

TXN

op1
op2

op'T1
op’2

FORMAL EXECUTION MODEL

TXN TXN
» Transactions are arbitrarily invoked op op'
» An Operation from an arbitrary op2 op'2

transaction is executed at a random
partition

FORMAL EXECUTION MODEL

TXN TXN
» Transactions are arbitrarily invoked op1 op'
» An Operation from an arbitrary op2 op’'2

transaction is executed at a random
partition

Partition 1 Partition 2

FORMAL EXECUTION MODEL

TXN TXN
» Transactions are arbitrarily invoked op'
» An Operation from an arbitrary op2 op’'2

transaction is executed at a random
partition

op1

Partition 1 Partition 2

FORMAL EXECUTION MODEL

TXN TXN

» Transactions are arbitrarily invoked

op2

» An Operation from an arbitrary
transaction is executed at a random
partition

op’2
a»

op1

op'1

Partition 1 Partition 2

FORMAL EXECUTION MODEL

TXN TXN

» Transactions are arbitrarily invoked

op2

» An Operation from an arbitrary
transaction is executed at a random

partition
» Operations create a set of read and write

op’2
effects upon execution in the partition - -

op1

op'1

Partition 1 Partition 2

FORMAL EXECUTION MODEL

TXN TXN

» Transactions are arbitrarily invoked

» An Operation from an arbitrary op2

transaction is executed at a random

op’2
partition
» Operations create a set of read and write
effects upon execution in the partition - -

» A relations on the set of effects op'

op'1

Partition 1 Partition 2

FORMAL EXECUTION MODEL

» Transactions are arbitrarily invoked

» An Operation from an arbitrary
transaction is executed at a random
partition

» Operations create a set of read and write
effects upon execution in the partition

» A relations on the set of effects

» visibility: causal precedence between
effects

TXN TXN

op2

op’2
a»

op1

op'1

Partition 1 Partition 2

FORMAL EXECUTION MODEL

» Transactions are arbitrarily invoked

» An Operation from an arbitrary
transaction is executed at a random
partition

» Operations create a set of read and write
effects upon execution in the partition

» A relations on the set of effects

» visibility: causal precedence between
effects

TXN TXN

op2

op’2
a»

op1

op'1

Partition 1 Partition 2

FORMAL EXECUTION MODEL

TXN TXN

» Transactions are arbitrarily invoked

» An Operation from an arbitrary
transaction is executed at a random
partition

» Operations create a set of read and write
effects upon execution in the partition

» A relations on the set of effects

» visibility: causal precedence between
effects

Partition 1 Partition 2

FORMAL EXECUTION MODEL

TXN TXN

» Transactions are arbitrarily invoked

» An Operation from an arbitrary
transaction is executed at a random
partition

» Operations create a set of read and write
effects upon execution in the partition

» A relations on the set of effects

» visibility: causal precedence between
effects

Partition 1 Partition 2

FORMAL EXECUTION MODEL

» Transactions are arbitrarily invoked

» An Operation from an arbitrary
transaction is executed at a random
partition

» Operations create a set of read and write
effects upon execution in the partition

» A relations on the set of effects

» visibility: causal precedence between
effects

TXN

TXN

Partition 1

Partition 2

FORMAL EXECUTION MODEL

» Transactions are arbitrarily invoked

» An Operation from an arbitrary
transaction is executed at a random
partition

» Operations create a set of read and write
effects upon execution in the partition

» A relations on the set of effects

» visibility: causal precedence between
effects

» Only within a partition!

TXN

TXN

Partition 1

Partition 2

DEPENDENCY RELATIONS

» Operation-level dependencies
» write dependency (WW)

UPDATE X

UPDATE X

N—r

W

DEPENDENCY RELATIONS

» Operation-level dependencies

» write dependency (WW)
» read dependency (WR)

UPDATE X

\is
SELECT X
p

/3

DEPENDENCY RELATIONS

» Operation-level dependencies
» write dependency (WW)
» read dependency (WR)
» read anti-dependency (RW) UPDATE X

‘\ = SELEC
@[,1, ELECT X

FOL ENCODING

FOL ENCODING

» A language of axiomatic relations encoded as a
decidable fragment of first order logic (FOL)

FOL ENCODING

» A language of axiomatic relations encoded as a
decidable fragment of first order logic (FOL)

» Finding bounded anomalies against a database
abstraction is reduced to finding satisfying
assignments to a formula ¢

» A language of axiomatic relations encoded in a
decidable fragment of first order logic (FOL)

» Finding bounded anomalies against a database
abstraction is reduced to finding satisfying
assignments to a formula

» Valid assignments are constrained
by five conjuncts

© = Pcontext /\ PpB N\ PpEp— N\ @ pEP /\ ©ANOMALY

0, E:SO_Q,ET/\ ©ps \ PpoEp— N\ P—pEP /\ PaNOMALY

g E:SQQNET/\ ©p N\ Ppep— N\ ©pEP /\ ©ANOMALY

» A set of constraints which must be
satisfied by any execution of any
program

P ={Peontexti Pos A\ Poer— A P—pee A Panouary

» A set of constraints which must be
satisfied by any execution of any
program

UPDATE X=1

SELECT X | //X=0
b

P ={Peontexti Pos A\ Poer— A P—pee A Panouary

» A set of constraints which must be
satisfied by any execution of any
program

UPDATE X=1

SELECT X | //X=0
b

/3

WR induces the same read/written values

P ={Pcontexti/\ Pos A Poee— A P—ee A\ Paromary

» A set of constraints which must be
satisfied by any execution of any
program

UPDATE X=

//X=0

UPDATE X=1

SELECT X

WR induces the same read/written values

/X

1

/\ Ppep— N\ P—pEP /\ PANOMALY

» Includes a set of user-defined constraints on records

= QPCoONTEXT

f”p5/\ Ppep— N P—pEP /\ PANOMALY

» Includes a set of user-defined constraints on records
» e.g. “all customer records must be older than 21"

= QPCoONTEXT

f”p5/\ Ppep— N P—pEP /\ PANOMALY

» Includes a set of user-defined constraints on records
» e.g. “all customer records must be older than 21"
» Includes database-specific consistency and isolation constraints

= QPCoONTEXT

f”p5/\ Ppep— N P—pEP /\ PANOMALY

» Includes a set of user-defined constraints on records

» e.g. “all customer records must be older than 21"

» Includes database-specific consistency and isolation constraints

Guarantee Specification
Causal Visibility Yoy = Vimam5. vis(ny, n2) AVis(n,, n3) = vis(ny, 1)
Causal Consistency | Y. = Vi1, Yoy A (st(n, 12) = vis(ny, 11,) V vis(n,, m1))
Read Committed Yoo = Vin21n5. st(ni, n2) AVis(ny, n3) = vis(n,, 13)
Repeatable Read Yor = Y1un2ns. st(ni, n2) A vis(ns, n1) = vis(ns, 12)
Linearizable ¥, =ar Cvis
Strictly Serial e A SR

= QPCoONTEXT

f”p5/\ Ppep— N P—pEP /\ PANOMALY

» Includes a set of user-defined constraints on records
» e.g. “all customer records must be older than 21"
» Includes database-specific consistency and isolation constraints

Guarantee Specification
Causal Visibility Yoo = V111m215. Vis(ny,) AVis(n, 173) = Vis(ny, 13)
Causal Consistency | Y. = Vn,1,. Yoy A (St(ny, 12) = vis(ny, 1) V vis(n,, 11))
Read Committed Yoo = V1inan3. st(ni, n2) Avis(n, n3) = vis(n,, 13)
Repeatable Read Yor = Vinans. st(n, n2) A vis(ns, n1) = vis(ns, 12)
Linearizable ¥ .. =ar Cvis
Strictly Serial e A SR

Only executions valid for the database abstraction are constructed

VDEP'“/\ @ _—SDEP A P ANOMALY

© = Pcontext N\ PoB /]

0 = PcontexT /\ PbB /\SODEP,/\ ©—pEP /\ PaNOoMALY

A&l

%
% g 74
L

» Necessary conditions to establish a dependency relation between two
operation instances

,DEP../\ @ _—SDEP A P ANOMALY

© = Pcontext N\ PoB /]

» Necessary conditions to establish a dependency relation between two
operation instances

UPDATE X & SELECT X

VDEP'“/\ @ _—SDEP A P ANOMALY

© = Pcontext N\ PoB /]

» Necessary conditions to establish a dependency relation between two
operation instances

» There is a mutually accessed record

Y .V

UPDATE X (e SELECT X

,DEP._>./\ @ _—SDEP A P ANOMALY

© = Pcontext N\ PoB /]

» Necessary conditions to establish a valid dependency relation between
two operation instances

» There is a mutually accessed record
» Both operations are simultaneously reached by the control flow

%

if (A==true){ if (A==false) {
} UPDATE X SELECT X

}

,DEP._>./\ @ _—SDEP A P ANOMALY

© = Pcontext N\ PoB /]

» Necessary conditions to establish a valid dependency relation between
two operation instances

» There is a mutually accessed record
» Both operations are simultaneously reached by the control flow

v ¥

if (A==true) { if (A==true) {
} UPDATE X SELECT X
\y
RW

+

Prpepf/\ Paromary

® = PYcontext /\ PpB /\ PpEP— /\}

P—pEP}/\ PaNomALY

© = PYcontext /\ PpB /\ PpEP— /\]

» Sufficient conditions to establish a dependency relation between two
operation instances

P —pEP}/N PanomaLy

© = PYcontext /\ PpB /\ PpEP— /\]

» Sufficient conditions to establish a dependency relation between two
operation instances

if (A==true) { if (A==true) {
UPDATE X SELECT X

J J

P—pEpi/\ PaNomaLy

® = PYcontext /\ PpB /\ PpEP— /\}

» Sufficient conditions to establish a dependency relation between two
operation instances

» If there is a mutually accessed record

if (A==tru¢ if (A==

UPDATE X SELECT X

J J

P—pEpi/\ PaNomaLy

® = PYcontext /\ PpB /\ PpEP— /\}

» Sufficient conditions to establish a dependency relation between two
operation instances

» If there is a mutually accessed record
» and both operations are reached

Yoo

if (A==true) { if (A==true) {
UPDATE X SELECT X

J J

Prperf/\ Paromary

® = PYcontext /\ PpB /\ PpEP— /\}

» Sufficient conditions to establish a dependency relation between two
operation instances

» If there is a mutually accessed record
» and both operations are reached
» and the update is visible to the select

if (A==$) { K it (A==tr¢ue) {

Vis
UPDATE X =" b SELECT X
]]

SO — SOCONTEXT /\ SODB /\ SODEP—) /\P/\ SOANOMALY

» Sufficient conditions to establish a dependency relation between two
operation instances

» If there is a mutually accessed record

. Operations must be
» and both operations are reached P

d dent by WR
» and the update is visible to the select cpendent by

\ 4 ¥

it (A==true) { : if (A==true) {

VIS

UPDATE X =" SELECT X

! \/’

WR

+

0 = Pcontext /\ P \ ©prp— /\ P _spEp /\SOANQMALY

L = PCONTEXT N\ Ypg N\ ©prp— \ P—pEP /\SOANOMAY *.

» Enforces the existence of an anomaly

P = PYcontexT /\ PpB /\ PpEP— N\ P—DEP /\SQA_NOMAY i

= -

» Enforces the existence of an anomaly
» Parametrized over three variables: i, j and k

0 = Pcontext /\ P \ ©prp— /\ P _spEp /\SOANQMALY *‘

~ -

» Enforces the existence of an anomaly

» Parametrized over three variables: i, jand k«—___ Bounds on the
state space

0 = Pcontext /\ P \ ©prp— /\ P _spEp /\SOANOMALY
» Enforces the existence of an anomaly
» Parametrized over three variables: i, j and k
» Instantiates i serially executed transactions,

Oop
op
op

Oop
op
Oop

I transactions 4/

serially executed

op
Oop
op
Oop

execution order

SO — QOCONTEXT /\ SODB /\ @DEP—) /\ SO%DEP /\SOANOMAY

» Enforces the existence of an anomaly

» Parametrized over three variables: i, j and k
» Instantiates i serially executed transactions,
» leading to j concurrent transactions

]]
Oop
op op op op
op| |op . i op op Oop
op op op gg
°P execution order

I transactions 4/

serially executed

j transactions

concurrently executed

SO — QPCONTEXT \ ¥DB A CDEP— /\ L _SsDEP /\QOANQMAY

» Enforces the existence of an anomaly

» Parametrized over three variables: i, j and k

» Instantiates i serially executed transactions,

» leading to j concurrent transactions

» that form a dependency cycle of length k

Oop
op
op

Oop
op
Oop

I transactions 4/

serially executed

-

op
Oop
op
Oop

Oop

Oop

S

Oop
Oop
Oop

j transactions

concurrently executed

dependency
cycle of length k

_

execution order

TESTING; FUNDAMENTAL CHALLENGES (REVISITED)

TESTING; FUNDAMENTAL CHALLENGES (REVISITED)

» Rich and precise encoding

TESTING; FUNDAMENTAL CHALLENGES (REVISITED)

» Rich and precise encoding

TESTING; FUNDAMENTAL CHALLENGES (REVISITED)

» Rich and precise encoding

» Triggering anomalies
requires determining:

» Initial database state

» Input arguments
» Execution order
» Network delays

TESTING; FUNDAMENTAL CHALLENGES (REVISITED)

» Rich and precise encoding Concrete database

» Triggering anomalies Instances
requires determining:

» Initial database state
» Input arguments

» Execution order
» Network delays

TESTING; FUNDAMENTAL CHALLENGES (REVISITED)

» Rich and precise encoding Concrete database

» Triggering anomalies Instances
requires determining:

» Initial database state
» Input arguments Transaction

» Execution order instances T ——w_ SO

» Network delays

TESTING; FUNDAMENTAL CHALLENGES (REVISITED)

» Rich and precise encoding Concrete database

» Triggering anomalies Instances
requires determining:

» Initial database state
» Input arguments Transaction

» Execution order instances T ——w_ SO

» Network delays
Control-flow /

sensitive

TESTING; FUNDAMENTAL CHALLENGES (REVISITED)

» Rich and precise encoding Concrete database

» Triggering anomalies Instances
requires determining:

» Initial database state
» Input arguments

Transaction

» Execution order instances ———w7y
» Network delays
Control-flow /
sensitive
Interleaved

execution order

TESTING; FUNDAMENTAL CHALLENGES (REVISITED)

» Rich and precise encoding Concrete database

» Triggering anomalies Instances
requires determining:

» Initial database state

» Input arguments
» Execution order

» Network delays

Random
Transaction partition

instances ————, @ — assignment

Control-flow / \

sensitive

Interleaved
execution order

CLOTHO: BUG DETECTION MECHANISM

CLOTHO: BUG DETECTION MECHANISM

» Static analysis engine for java programs

CLOTHO: BUG DETECTION MECHANISM

Java Program

» Static analysis engine for java programs

CLOTHO: BUG DETECTION MECHANISM

Java Program

» Static analysis engine for java programs

» Compiles programs down to an ;
abstract representation | Eront-end

Compiler

CLOTHO: BUG DETECTION MECHANISM

Java Program

» Static analysis engine for java programs

» Compiles programs down to an

abstract representation Eront-end

» FOL encoding engine, backed by Z3 | Compiler
SMT solver <}

Encoding

Engine

CLOTHO: BUG DETECTION MECHANISM

Java Program

» Static analysis engine for java programs

» Compiles programs down to an

abstract representation Eront-end
» FOL encoding engine, backed by Z3 | Compiler
SMT solver <}
Encoding
Engine

2

SMT Solver

CLOTHO: BUG DETECTION MECHANISM

Java Program

» Static analysis engine for java programs

» Compiles programs down to an

abstract representation Front-end
» FOL encoding engine, backed by Z3 | Compiler
SMT solver <}
» Efficient search algorithm | Encoding
E Engine

2

SMT Solver

CLOTHO: BUG DETECTION MECHANISM

Java Program

» Static analysis engine for java programs

» Compiles programs down to an

abstract representation Front-end
» FOL encoding engine, backed by Z3 | Compiler
SMT solver <}
» Efficient search algorithm | Encoding
» Returns annotated code containing | Engine
concrete anomalies P .
. | [SMT Solver

¥

Code Annotated Java
Annotator *

Program

CLOTHO: REPLAYING MECHANISM

CLOTHO: REPLAYING MECHANISM

» Directed test framework

Annotated
Java Code

Annotated
Java Code

Managed Managed
Driver Driver

CLOTHO: REPLAYING MECHANISM

» Directed test framework
» automated step-by-step - i i~ i i

replaying of annotated buggy § Annotated Annotated
programs Java Code Java Code

Managed Managed
Driver Driver

CLOTHO: REPLAYING MECHANISM

» Directed test framework
» automated step-by-step - i i~ i i

replaying of annotated buggy § Annotated Annotated
programs ’ Java Code Java Code

Managed Managed
Driver Driver

» synchronized drivers

CLOTHO: REPLAYING MECHANISM

» Directed test framework

» automated step-by-step - i i~ i ,
replaying of annotated buggy Annotated ’
programs E Java Code

Annotated
Java Code

Managed
Driver

» synchronized drivers Managed

Driver

» managed connection throttler in
a cluster of database nodes

EMPIRICAL RESULTS: APPLICABILITY

EMPIRICAL RESULTS: APPLICABILITY

» 7 benchmarks of various complexity and different
properties were analyzed

SEAIS TATP TPC_C SMALLBANK VOTER TWITTER WIKIPEDIA

EMPIRICAL RESULTS: APPLICABILITY

» 7 benchmarks of various complexity and different
properties were analyzed

» Serializability anomalies were found and successfully
replayed in 5 application

60
90
40
30
20
10

0

ANOMALIES

meeeees N

SEAIS TATP TPC_C SMALLBANK VOTER TWITTER WIKIPEDIA

EMPIRICAL RESULTS: APPLICABILITY

» 7 benchmarks of various complexity and different
properties were analyzed

» Serializability anomalies were found and successfully
replayed in 5 application

60
90
40
30
20
10

0

~25m per application (avg)

17 anomalies per application (avg)

ANOMALIES

meeeees N

SEAIS TATP TPC_C SMALLBANK VOTER TWITTER WIKIPEDIA

EMPIRICAL RESULTS: COMPARISON TO BLACKBOX TESTING

Invariant | Blackbox
CR1

CR2
CR3
CR4
CR5A
CRS5SB
CR6
CR7A
CR7B
CR8
CR9
CR10
CR11
CR12
NCR1
NCR2
NCR3
NCR4
NCRS
NCR6
NCR7

EMPIRICAL RESULTS: COMPARISON TO BLACKBOX TESTING

} Case Study: TPC-C Invariant | Blackbox

CR1
CR2
CR3
CR4
CR5A
CRS5SB
CR6
CR7A
CR7B
CR8
CR9
CR10
CR11
CR12
NCR1
NCR2
NCR3
NCR4
NCRS
NCR6
NCR7

EMPIRICAL RESULTS: COMPARISON TO BLACKBOX TESTING

} Case Study: TPC-C Invariant | Blackbox

CR1

CR2
» Anomalies were studied and mapped to CR3

invariant violations CR4
CR5A

CRS5SB
CR6
CR7A
CR7B
CR8
CR9
CR10
CR11
CR12
NCR1
NCR2
NCR3
NCR4
NCRS
NCR6
NCR7

EMPIRICAL RESULTS: COMPARISON TO BLACKBOX TESTING

. _ Invariant | Blackbox | CLOTHO
» Case study: TPC-C =
o o CR2
» Anomalies were studied and mapped to CR3
invariant violations CR4

CR5A

» All invariants were broken as a result of at ESDB

least one serializability anomaly CR7A

CR7B
CR8
CR9
CR10
CR11
CR12
NCR1
NCR2
NCR3
NCR4
NCR5
NCR6
NCR7

EMPIRICAL RESULTS: COMPARISON TO BLACKBOX TESTING

. _ Invariant | Blackbox | CLOTHO
» Case study: TPC-C =
o o CR2
» Anomalies were studied and mapped to CR3
invariant violations CR4

CR5A

» All invariants were broken as a result of at ESDB

least one serializability anomaly CR7A
CR7/B

» Only 3 serializability anomalies did not CRS

result in anv invariant violation i
y CR10

CR11

CR12
NCR1
NCR2
NCR3
NCR4
NCR5
NCR6
NCR7

SUMMARY

SUMMARY

» CLOTHO: an end-to-end directed testing framework for weakly
consistent database programs

SUMMARY

» CLOTHO: an end-to-end directed testing framework for weakly
consistent database programs

» The problem of finding serializability anomalies is reduced to finding
satisfying assignments to a formula

SUMMARY

» CLOTHO: an end-to-end directed testing framework for weakly
consistent database programs

» The problem of finding serializability anomalies is reduced to finding
satisfying assignments to a formula

» Applicable on many benchmark applications

SUMMARY

» CLOTHO: an end-to-end directed testing framework for weakly
consistent database programs

» The problem of finding serializability anomalies is reduced to finding
satisfying assignments to a formula

» Applicable on many benchmark applications

» Outperforms state of the art blackbox testing techniques

THANK YOU!

QUESTIONS?

OF% %
e

Ot

TOOL AVAILABLE

ANNOTATED CODE EXAMPLE

» Includes transaction instances, arguments

» Accompanied by a test configuration file specitying execution order
and networking details

O G0 1 O U o W N =

@Parameters (10)
public void payment ... {

@Sched(node="B", order=1)
rs = stmt.executeQuery();

@Sched(node="B", order=2)
stmt.executeUpdate () ;

1nitialize:
INSERT INTO

CUST(c_1d,c_pay_cnt)

VALUES (10,50);
schedule:

@T1@partitions{A,B}:
@T2@partitions{A,B}:
@T3@partitions{A,B}:
@T4@partitions{A,B}:

Ins1-0T1
Ins2-01
Ins1-02
Ins2-02

A1_Ins2.java

Al.conf

NECESSARY RULE EXAMPLE

» Rules specify the necessary conditions for establishing a dependency
relation between two database operation instances

RW-SELECT-UPDATE q = SELECT f AS x WHERE ¢
q’ = UPDATE SET f = v WHERE ¢’
txn(q) = ¢ txn(q’) = ¢’ t#t

pro = 3r. [¢1;, AI$'D; , AAlive(r, g)A
Alive(r, ¢') A [A(@)]; A [A(G)TE

SUFFICIENT RULE EXAMPLE

» Rules specify the sufficient conditions for establishing a dependency
relation between two database operation instances

UPDATE-SELECT-WR

g = SELECT f AS x WHERE ¢
g’ = UPDATE SET f = v WHERE ¢’
txn(g) =t txn(q’) = ¢’ t#t

po'n =vis(q, q) A Ar. [15, A 917 A
Alive(r, q) A Alive(r, ¢') A [A(Q)]E A [A(q)]E

STRUCTURALLY SIMILAR ANOMALIES

» All share the same transaction instances and the same edges
between them:

..

UPDATE X

UPDATE X

UPDATE Y

SEARCH ALGORITHM

1 fort € [2, max;] do

2 c <3

3 | whilec < max, do optimization: inner
: ¢nec < EncNeg(cycles) loop for finding

5 new_cyc < isSAT(3t1, ..., t. Oeyere(t1,-..1t) A @pp A @app A Ongg) o

6 if new_cyc = UNSAT then ¢ « ¢ + 1; continue; StrUCtura”y similar
7 cycles « cycles U {new_cyc} anomalies

8 @ster < EncStruct(new_cyc)

9 do

10 ¢nrc < EncNeg(cycles)

11 new_cyc < isSAT(3ty, ...t;. Qeyere(tts ---tt) A @os A @app A Onec A @ster)

12 if new_cyc = UNSAT then break else cycles « cycles U {new_cyc} ;

13 while true;

14 for cyc € cycles do
15 for p € [0, max,] do

16 @para < EncPath(cyc)
17 new_anml « isSAT(3ty, ..., tp. Pparn)
18 if new anml # UNSAT then anoms <« anoms U {new anml}; break;

EFFECT OF OPTIMIZATIONS IN SEARCH ALGORITHM

Number of
anomalies found
within the same
given time period p

20 |

10 |

g0 |] Optimized B Basic

50

i

TPC-C SEATS SmallBank

RELATED WORKS

» [Kaki et al. 2018], [Nagar et al. 2018]

» Do not incorporate their techniques into a full test-and-reply environment

» [Brutschy et al. 2018]

» Does not suit query-based models where dependences between two
operations cannot be decided locally, but are reliant on other operations

» [Warszawski and Bailis 2017]

» Does not consider how to help determining if applications executing on
storage systems that expose guarantees weaker than serializability are
actually correct

