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▸ Transactional support  

▸ Highly structured relational data 

▸ Clients invoke transactions 

▸ Structured query language for 
data retrieval/modification 

▸ Queries processed and 
responded by the DBMS 
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▸ ACID guarantees  
▸ Atomicity 
▸ Consistency 
▸ Isolation 
▸ Durability

▸ Weaker guarantees are offered in 
favor of higher performance 

Not Isolated!

Witness 
each other’s 
presence!

▸ Serializability facilitates  
program design and reasoning 

▸ Requires heavy synchronization
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EXAMPLE: A SERIALIZABILITY ANOMALY

▸ Unexpected behaviors 
can occur under weak 
guarantees

▸ Assumed program 
invariants can be violated
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▸ Data is geo-replicated in 
highly-available DBMSs 

▸ Worldwide synchronization 
is extremely costly 

▸ Strongly synchronized data 
cannot be available

▸ Weak consistency semantics 
are very popular 

▸ Serializabiliabity is rarely 
assumed by default 
[Bailis et.al]
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Exponential 
state space!
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BLACKBOX TESTING

▸ Independent of application 
semantics

▸ Independent of database 
specific guarantees

▸ Not reproducible

▸ Each database may offer 
multiple guarantees

▸ Time and resource 
consuming!

▸ No guarantees

RIAKCASSANDRACALVINPOSTGRESQL MONGODB

HOTEL 
RESERVATION BANKING ONLINE  SHOP
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BLACKBOX TESTING IN ACTION

Customers

Warehouses

Items

Stocks

NEW_ORDER STOCK_LEVEL

ORDER_STATUS

PAYMENT

DELIVERY

▸ State of the art cloud-based 
testing framework using 
Jepsen and OLTPBench 

▸ TPC-C benchmark 
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▸ State of the art cloud-based 
testing framework using 
Jepsen and OLTPBench 

▸ TPC-C benchmark  

▸ 21 application-level invariants 
were analyzed  

▸ Only 14 out of 21 invariants 
were broken at best

33%
67%

1/3 of invariants 
are assumed to 
be preserved

BLACKBOX TESTING IN ACTION



WHITE-BOX ANALYSIS



▸ Systematic assessment of 
anomalous executions within 
a given program

WHITE-BOX ANALYSIS



▸ Systematic assessment of 
anomalous executions within 
a given program SELECT pay_cnt AS v 

   WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1 
   WHERE id=arg

SELECT pay_cnt AS v 
   WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1 
   WHERE id=arg

WHITE-BOX ANALYSIS



SELECT pay_cnt AS v 
   WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1 
   WHERE id=arg

SELECT pay_cnt AS v 
   WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1 
   WHERE id=arg

▸ Systematic assessment of 
anomalous executions within 
a given program 

▸ Data dependencies among 
database operations

WHITE-BOX ANALYSIS



SELECT pay_cnt AS v 
   WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1 
   WHERE id=arg

SELECT pay_cnt AS v 
   WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1 
   WHERE id=arg

▸ Systematic assessment of 
anomalous executions within 
a given program 

▸ Data dependencies among 
database operations 

▸ Execution properties (e.g. 
order) affect dependent 
operations

WHITE-BOX ANALYSIS

Does NOT witness 
the update



SELECT pay_cnt AS v 
   WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1 
   WHERE id=arg

SELECT pay_cnt AS v 
   WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1 
   WHERE id=arg

▸ Systematic assessment of 
anomalous executions within 
a given program 

▸ Data dependencies among 
database operations 

▸ Execution properties (e.g. 
order) affect dependent 
operations

WHITE-BOX ANALYSIS

Witnesses the update



SELECT pay_cnt AS v 
   WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1 
   WHERE id=arg

SELECT pay_cnt AS v 
   WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1 
   WHERE id=arg

▸ Systematic assessment of 
anomalous executions within 
a given program 

▸ Data dependencies among 
database operations 

▸ Execution properties (e.g. 
order) affect dependent 
operations 

▸ Cyclic dependencies 
between transactions 
correspond to anomalous 
executions   

WHITE-BOX ANALYSIS
Does NOT witness 
the update

Does NOT witness 
the update



SELECT pay_cnt AS v 
   WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1 
   WHERE id=arg

SELECT pay_cnt AS v 
   WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1 
   WHERE id=arg

▸ Systematic assessment of 
anomalous executions within 
a given program 
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database operations 

▸ Execution properties (e.g. 
order) affect dependent 
operations 
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Goal: statically construct valid 
execution and database 
instances with cyclic 
dependencies 
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▸ Transactions are arbitrarily invoked

▸ An Operation from an arbitrary 
transaction is executed at a random 
partition

▸ Operations create a set of read and write 
effects upon execution in the partition

▸ A relations on the set of effects
▸ visibility: causal precedence between 

effects 
▸ Only within a partition!

TXN TXN

Partition 1 Partition 2

vis op1

op2

op’1
op’2

vis

FORMAL EXECUTION MODEL



DEPENDENCY RELATIONS

▸ Operation-level dependencies  
▸ write dependency (WW)

WW

UPDATE X

UPDATE X



▸ Operation-level dependencies  
▸ write dependency (WW) 
▸ read dependency (WR)

vis

WR

UPDATE X

SELECT X   

DEPENDENCY RELATIONS



▸ Operation-level dependencies  
▸ write dependency (WW) 
▸ read dependency (WR) 
▸ read anti-dependency (RW)

RW

UPDATE X

SELECT X   

DEPENDENCY RELATIONS
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by five conjuncts
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▸ A set of constraints which must be 
satisfied by any execution of any 
program

⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

WR induces the same read/written values

WR

UPDATE X=1

SELECT X    //X=0 WR

UPDATE X=1

SELECT X    //X=1
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▸ Includes a set of user-defined constraints on records 
▸ e.g. “all customer records must be older than 21”

▸ Includes database-specific consistency and isolation constraints 

⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

Only executions valid for the database abstraction are constructed
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UPDATE X SELECT X  

if (A==true) { if (A==true) {
} }

▸ Necessary conditions to establish a valid dependency relation between 
two operation instances 
▸ There is a mutually accessed record 
▸ Both operations are simultaneously reached by the control flow  

RW
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▸ Sufficient conditions to establish a dependency relation between two 
operation instances 
▸ If there is a mutually accessed record 
▸ and both operations are reached 
▸ and the update is visible to the select

⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

}Operations must be 
dependent by WR

vis
UPDATE X SELECT X 

if (A==true) { if (A==true) {

} }
WR
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execution order

'C

▸ Enforces the existence of an anomaly
▸ Parametrized over three variables: i, j and k
▸ Instantiates i serially executed transactions,
▸ leading to j concurrent transactions 
▸ that form a dependency cycle of length k

⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

op
op
op

op
op
op

op
op

op
op
op
op

i transactions j transactions

op
op
op op

op
op

op
op

dependency 
cycle of length k

serially executed concurrently executed
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▸ Rich and precise encoding 
▸ Triggering anomalies 

requires determining: 
▸ Initial database state 
▸ Input arguments  
▸ Execution order  
▸ Network delays

TESTING; FUNDAMENTAL CHALLENGES (REVISITED)
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Transaction 
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Random 
partition 
assignment

Concrete database 
instances 

Interleaved 
execution order

Control-flow 
sensitive

✅

✅
✅
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Front-end 
Compiler

Encoding 
Engine

SMT Solver

Code 
Annotator

Java Program▸ Static analysis engine for java programs
▸ Compiles programs down to an 

abstract representation
▸ FOL encoding engine, backed by Z3 

SMT solver
▸ Efficient search algorithm
▸ Returns annotated code containing 

concrete anomalies

Annotated Java 
Program
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▸ Directed test framework
▸ automated step-by-step 

replaying of annotated buggy 
programs

▸ synchronized drivers
▸ managed connection throttler in 

a cluster of database nodes

Managed 
JDBC Driver

Annotated 
Java Code

Test Administrator

Managed 
JDBC Driver

DB Node

Driver

DB Node

Annotated 
Java Code

Driver
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EMPIRICAL RESULTS: APPLICABILITY 

▸ 7 benchmarks of various complexity and different 
properties were analyzed 

▸ Serializability anomalies were found and successfully 
replayed in 5 application

~25m per application (avg)
17 anomalies per application (avg)
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EMPIRICAL RESULTS: COMPARISON TO BLACKBOX TESTING

Invariant Blackbox CLOTHO
CR1 Y Y
CR2 Y Y
CR3 Y Y
CR4 Y Y
CR5A N Y
CR5B N Y
CR6 Y Y
CR7A N Y
CR7B N Y
CR8 Y Y
CR9 Y Y
CR10 Y Y
CR11 Y Y
CR12 Y Y
NCR1 Y Y
NCR2 Y Y
NCR3 N Y
NCR4 N Y
NCR5 Y Y
NCR6 Y Y
NCR7 N Y
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▸ Case study: TPC-C 

▸ Anomalies were studied and mapped to 
invariant violations 

▸ All invariants were broken as a result of at 
least one serializability anomaly

▸ Only 3 serializability anomalies did not 
result in any invariant violation
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CR1 Y Y
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SUMMARY

▸ CLOTHO: an end-to-end directed testing framework for weakly 
consistent database programs

▸ The problem of finding serializability anomalies is reduced to finding 
satisfying assignments to a formula

▸ Applicable on many benchmark applications 

▸ Outperforms state of the art blackbox testing techniques
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ANNOTATED CODE EXAMPLE

▸ Includes transaction instances, arguments 

▸ Accompanied by a test configuration file specifying execution order 
and networking details



NECESSARY RULE EXAMPLE

▸ Rules specify the necessary conditions for establishing a dependency 
relation between two database operation instances



SUFFICIENT RULE EXAMPLE

▸ Rules specify the sufficient conditions for establishing a dependency 
relation between two database operation instances



STRUCTURALLY SIMILAR ANOMALIES 

▸ All share the same transaction instances and the same edges 
between them: 



SEARCH ALGORITHM 

optimization: inner 
loop for finding 
structurally similar 
anomalies 



EFFECT OF OPTIMIZATIONS IN SEARCH ALGORITHM 

Number of 
anomalies found 
within the same 
given time period



RELATED WORKS

▸ [Kaki et al. 2018], [Nagar et al. 2018]  
▸ Do not incorporate their techniques into a full test-and-reply environment 

▸ [Brutschy et al. 2018] 
▸ Does not suit query-based models where dependences between two 

operations cannot be decided locally, but are reliant on other operations 

▸ [Warszawski and Bailis 2017]  
▸ Does not consider how to help determining if applications executing on 

storage systems that expose guarantees weaker than serializability are 
actually correct


