
CLOTHO: DIRECTED TEST GENERATION FOR
WEAKLY CONSISTENT DATABASE SYSTEMS

OOPSLA 2019
OCT 25, 2019

Kia Rahmani
Kartik Nagar
Benjamin Delaware
Suresh Jagannathan

TRADITIONAL DATABASE PROGRAMMING

TXN TXN TXN

TXN TXN

Database Program▸ Transactional support

TRADITIONAL DATABASE PROGRAMMING

▸ Transactional support

▸ Highly structured relational data TXN TXN TXN

TXN TXN

Database Program

Database

TRADITIONAL DATABASE PROGRAMMING

TXN TXN TXN

TXN TXN

Database Program

Database

▸ Transactional support

▸ Highly structured relational data

▸ Clients invoke transactions

TRADITIONAL DATABASE PROGRAMMING

TXN TXN TXN

TXN TXN

Database Program

Database

▸ Transactional support

▸ Highly structured relational data

▸ Clients invoke transactions

▸ Structured query language for
data retrieval/modification

TRADITIONAL DATABASE PROGRAMMING

TXN TXN TXN

TXN TXN

Database Program

Database

▸ Transactional support

▸ Highly structured relational data

▸ Clients invoke transactions

▸ Structured query language for
data retrieval/modification

▸ Queries processed and
responded by the DBMS

TRADITIONAL DATABASE PROGRAMMING

▸ ACID guarantees

TRADITIONAL DATABASE PROGRAMMING

▸ ACID guarantees
▸ Atomicity

TXN

TRADITIONAL DATABASE PROGRAMMING

▸ ACID guarantees
▸ Atomicity

TXN
UPDATE

UPDATE

UPDATE

TRADITIONAL DATABASE PROGRAMMING

▸ ACID guarantees
▸ Atomicity

TXN

UPDATEUPDATE
UPDATE

TRADITIONAL DATABASE PROGRAMMING

▸ ACID guarantees
▸ Atomicity

TXN

UPDATEUPDATE
UPDATE

“All or None”

TRADITIONAL DATABASE PROGRAMMING

TXN▸ ACID guarantees
▸ Atomicity
▸ Consistency

TXN

TXN

TRADITIONAL DATABASE PROGRAMMING

TXN

“Single Copy of Data”

▸ ACID guarantees
▸ Atomicity
▸ Consistency

TXN

TXN

TRADITIONAL DATABASE PROGRAMMING

▸ ACID guarantees
▸ Atomicity
▸ Consistency
▸ Isolation

execution order

TRADITIONAL DATABASE PROGRAMMING

▸ ACID guarantees
▸ Atomicity
▸ Consistency
▸ Isolation

TXN

execution order

TRADITIONAL DATABASE PROGRAMMING

TXN

▸ ACID guarantees
▸ Atomicity
▸ Consistency
▸ Isolation

TXN

execution order

TRADITIONAL DATABASE PROGRAMMING

TXN

▸ ACID guarantees
▸ Atomicity
▸ Consistency
▸ Isolation

TXN

TXN

execution order

TRADITIONAL DATABASE PROGRAMMING

TXN

▸ ACID guarantees
▸ Atomicity
▸ Consistency
▸ Isolation

TXN

TXN

execution order

“No Interference”

TRADITIONAL DATABASE PROGRAMMING

▸ ACID guarantees
▸ Atomicity
▸ Consistency
▸ Isolation
▸ Durability

TXN

UPDATE

TRADITIONAL DATABASE PROGRAMMING

▸ ACID guarantees
▸ Atomicity
▸ Consistency
▸ Isolation
▸ Durability

“Permanent Commits”

UPDATE

SERIALIZABILITY GUARANTEES

▸ ACID guarantees
▸ Atomicity
▸ Consistency
▸ Isolation
▸ Durability

▸ Serializability

SERIALIZABILITY GUARANTEES

▸ ACID guarantees
▸ Atomicity
▸ Consistency
▸ Isolation
▸ Durability

▸ Serializability facilitates
program design and reasoning

SERIALIZABILITY GUARANTEES

▸ ACID guarantees
▸ Atomicity
▸ Consistency
▸ Isolation
▸ Durability

▸ Serializability facilitates
program design and reasoning

SERIALIZABILITY GUARANTEES

▸ ACID guarantees
▸ Atomicity
▸ Consistency
▸ Isolation
▸ Durability

▸ Serializability facilitates
program design and reasoning

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

SERIALIZABILITY GUARANTEES

▸ ACID guarantees
▸ Atomicity
▸ Consistency
▸ Isolation
▸ Durability

▸ Serializability facilitates
program design and reasoning

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

SERIALIZABILITY GUARANTEES

▸ ACID guarantees
▸ Atomicity
▸ Consistency
▸ Isolation
▸ Durability

▸ Serializability facilitates
program design and reasoning

execution order

id pay_cnt
1 0

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

SERIALIZABILITY GUARANTEES

▸ ACID guarantees
▸ Atomicity
▸ Consistency
▸ Isolation
▸ Durability

▸ Serializability facilitates
program design and reasoning

execution order

id pay_cnt
1 0

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

 0

SERIALIZABILITY GUARANTEES

▸ ACID guarantees
▸ Atomicity
▸ Consistency
▸ Isolation
▸ Durability

▸ Serializability facilitates
program design and reasoning

execution order

id pay_cnt
1 0

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

 0

 1

SERIALIZABILITY GUARANTEES

▸ ACID guarantees
▸ Atomicity
▸ Consistency
▸ Isolation
▸ Durability

▸ Serializability facilitates
program design and reasoning

execution order

id pay_cnt
1 0

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

 0

 1

id pay_cnt
1 1

SERIALIZABILITY GUARANTEES

▸ ACID guarantees
▸ Atomicity
▸ Consistency
▸ Isolation
▸ Durability

▸ Serializability facilitates
program design and reasoning

execution order

id pay_cnt
1 0

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

 1

 0

 1

id pay_cnt
1 1

SERIALIZABILITY GUARANTEES

▸ ACID guarantees
▸ Atomicity
▸ Consistency
▸ Isolation
▸ Durability

▸ Serializability facilitates
program design and reasoning

execution order

id pay_cnt
1 0

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

 2

 1

 0

 1

id pay_cnt
1 1

SERIALIZABILITY GUARANTEES

▸ ACID guarantees
▸ Atomicity
▸ Consistency
▸ Isolation
▸ Durability

▸ Serializability facilitates
program design and reasoning

execution order

id pay_cnt
1 0

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

 2

 1

 0

 1

id pay_cnt
1 1

id pay_cnt
1 2

SERIALIZABILITY GUARANTEES

▸ ACID guarantees
▸ Atomicity
▸ Consistency
▸ Isolation
▸ Durability

▸ Serializability facilitates
program design and reasoning

execution order

id pay_cnt
1 0

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

 2

 1

 0

 1

id pay_cnt
1 1

id pay_cnt
1 2

Final pay_cnt = # of TXN invocation

SERIALIZABILITY GUARANTEES

▸ ACID guarantees
▸ Atomicity
▸ Consistency
▸ Isolation
▸ Durability

▸ Serializability facilitates
program design and reasoning

▸ Requires heavy synchronization

SERIALIZABILITY GUARANTEES

▸ ACID guarantees
▸ Atomicity
▸ Consistency
▸ Isolation
▸ Durability

▸ Serializability facilitates
program design and reasoning

▸ Requires heavy synchronization

SERIALIZABILITY GUARANTEES

▸ ACID guarantees
▸ Atomicity
▸ Consistency
▸ Isolation
▸ Durability

▸ Serializability facilitates
program design and reasoning

▸ Requires heavy synchronization

Unacceptable cost
for web-scale
applications

SERIALIZABILITY GUARANTEES

▸ ACID guarantees
▸ Atomicity
▸ Consistency
▸ Isolation
▸ Durability

▸ Weaker guarantees are offered in
favor of higher performance

Not Isolated!

Witness
each other’s
presence!

▸ Serializability facilitates
program design and reasoning

▸ Requires heavy synchronization

EXAMPLE: A SERIALIZABILITY ANOMALY

EXAMPLE: A SERIALIZABILITY ANOMALY

▸ Unexpected behaviors
can occur under weak
guarantees

EXAMPLE: A SERIALIZABILITY ANOMALY

▸ Unexpected behaviors
can occur under weak
guarantees

execution order

id pay_cnt
1 0 SELECT pay_cnt AS v

 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

EXAMPLE: A SERIALIZABILITY ANOMALY

▸ Unexpected behaviors
can occur under weak
guarantees

execution order

id pay_cnt
1 0

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

EXAMPLE: A SERIALIZABILITY ANOMALY

▸ Unexpected behaviors
can occur under weak
guarantees

execution order

id pay_cnt
1 0

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

 0

EXAMPLE: A SERIALIZABILITY ANOMALY

▸ Unexpected behaviors
can occur under weak
guarantees

execution order

id pay_cnt
1 0

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

 0

 0

EXAMPLE: A SERIALIZABILITY ANOMALY

▸ Unexpected behaviors
can occur under weak
guarantees

execution order

id pay_cnt
1 0

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

 0

 0

 1

 1

EXAMPLE: A SERIALIZABILITY ANOMALY

▸ Unexpected behaviors
can occur under weak
guarantees

execution order

id pay_cnt
1 0

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

 0

 0

 1

 1

EXAMPLE: A SERIALIZABILITY ANOMALY

▸ Unexpected behaviors
can occur under weak
guarantees

execution order

id pay_cnt
1 0

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

 0

 0

 1

id pay_cnt
1 1

 1

EXAMPLE: A SERIALIZABILITY ANOMALY

▸ Unexpected behaviors
can occur under weak
guarantees

▸ Assumed program
invariants can be violated

execution order

id pay_cnt
1 0

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

 0

 0

 1

id pay_cnt
1 1

Final pay_cnt = # of TXN invocation

WEAKLY CONSISTENT REPLICATED DATABASE SYSTEMS

WEAKLY CONSISTENT REPLICATED DATABASE SYSTEMS

▸ Data is geo-replicated in
highly-available DBMSs

WEAKLY CONSISTENT REPLICATED DATABASE SYSTEMS

▸ Data is geo-replicated in
highly-available DBMSs

▸ Worldwide synchronization
is extremely costly

WEAKLY CONSISTENT REPLICATED DATABASE SYSTEMS

Loosely
Synched!

▸ Data is geo-replicated in
highly-available DBMSs

▸ Worldwide synchronization
is extremely costly

▸ Strongly synchronized data
cannot be available

WEAKLY CONSISTENT REPLICATED DATABASE SYSTEMS

▸ Data is geo-replicated in
highly-available DBMSs

▸ Worldwide synchronization
is extremely costly

▸ Strongly synchronized data
cannot be available

WEAKLY CONSISTENT REPLICATED DATABASE SYSTEMS

▸ Data is geo-replicated in
highly-available DBMSs

▸ Worldwide synchronization
is extremely costly

▸ Strongly synchronized data
cannot be available

▸ Weak consistency semantics
are very popular

WEAKLY CONSISTENT REPLICATED DATABASE SYSTEMS

▸ Data is geo-replicated in
highly-available DBMSs

▸ Worldwide synchronization
is extremely costly

▸ Strongly synchronized data
cannot be available

WEAKLY CONSISTENT REPLICATED DATABASE SYSTEMS

▸ Data is geo-replicated in
highly-available DBMSs

▸ Worldwide synchronization
is extremely costly

▸ Strongly synchronized data
cannot be available

▸ Weak consistency semantics
are very popular

▸ Serializabiliabity is rarely
assumed by default 
[Bailis et.al]

TESTING: FUNDAMENTAL CHALLENGES

TESTING: FUNDAMENTAL CHALLENGES

▸ Triggering anomalies
requires determining
many parameters

TESTING: FUNDAMENTAL CHALLENGES

▸ Triggering anomalies
requires determining
many parameters

execution order

id pay_cnt
1 0

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

▸ Triggering anomalies
requires determining
many parameters
▸ Initial database state

execution order

id pay_cnt
1 0

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

TESTING: FUNDAMENTAL CHALLENGES

▸ Triggering anomalies
requires determining
many parameters
▸ Initial database state
▸ Input arguments

execution order

id pay_cnt
1 0

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg) //arg=1

UPDATE pay_cnt=v+1
 WHERE id=arg

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg) //arg=1

UPDATE pay_cnt=v+1
 WHERE id=arg

TESTING: FUNDAMENTAL CHALLENGES

▸ Triggering anomalies
requires determining
many parameters
▸ Initial database state
▸ Input arguments
▸ Execution order

 1

execution order

id pay_cnt
1 0

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg) //arg=1

UPDATE pay_cnt=v+1
 WHERE id=arg

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg) //arg=1

UPDATE pay_cnt=v+1
 WHERE id=arg

 0

 0

 1

TESTING: FUNDAMENTAL CHALLENGES

▸ Triggering anomalies
requires determining
many parameters
▸ Initial database state
▸ Input arguments
▸ Execution order
▸ Network delays

 1

execution order

id pay_cnt
1 0

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg) //arg=1

UPDATE pay_cnt=v+1
 WHERE id=arg

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg) //arg=1

UPDATE pay_cnt=v+1
 WHERE id=arg

 0

 0

 1

TESTING: FUNDAMENTAL CHALLENGES

▸ Triggering anomalies
requires determining
many parameters
▸ Initial database state
▸ Input arguments
▸ Execution order
▸ Network delays

 1

execution order

id pay_cnt
1 0

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg) //arg=1

UPDATE pay_cnt=v+1
 WHERE id=arg

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg) //arg=1

UPDATE pay_cnt=v+1
 WHERE id=arg

 0

 0

 1

TESTING: FUNDAMENTAL CHALLENGES

▸ Triggering anomalies
requires determining
many parameters
▸ Initial database state
▸ Input arguments
▸ Execution order
▸ Network delays

 1

execution order

id pay_cnt
1 0

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg) //arg=1

UPDATE pay_cnt=v+1
 WHERE id=arg

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg) //arg=1

UPDATE pay_cnt=v+1
 WHERE id=arg

 0

 0

 1

TESTING: FUNDAMENTAL CHALLENGES

Exponential
state space!

BLACKBOX TESTING

BLACKBOX TESTING

▸ Independent of application
semantics HOTEL

RESERVATION BANKING ONLINE SHOP

BLACKBOX TESTING

▸ Independent of application
semantics

▸ Independent of database
specific guarantees

RIAKCASSANDRACALVINPOSTGRESQL MONGODB

HOTEL
RESERVATION BANKING ONLINE SHOP

BLACKBOX TESTING

▸ Independent of application
semantics

▸ Independent of database
specific guarantees

▸ Not reproducible

RIAKCASSANDRACALVINPOSTGRESQL MONGODB

HOTEL
RESERVATION BANKING ONLINE SHOP

EC CC RMW EC CCRR RC PSI EC

BLACKBOX TESTING

▸ Independent of application
semantics

▸ Independent of database
specific guarantees

▸ Not reproducible

▸ Each database may offer
multiple guarantees

RIAKCASSANDRACALVINPOSTGRESQL MONGODB

HOTEL
RESERVATION BANKING ONLINE SHOP

EC CC RMW EC CCRR RC PSI EC

BLACKBOX TESTING

▸ Independent of application
semantics

▸ Independent of database
specific guarantees

▸ Not reproducible

▸ Each database may offer
multiple guarantees

▸ Time and resource
consuming!

RIAKCASSANDRACALVINPOSTGRESQL MONGODB

HOTEL
RESERVATION BANKING ONLINE SHOP

EC CC RMW EC CCRR RC PSI EC

BLACKBOX TESTING

▸ Independent of application
semantics

▸ Independent of database
specific guarantees

▸ Not reproducible

▸ Each database may offer
multiple guarantees

▸ Time and resource
consuming!

▸ No guarantees

RIAKCASSANDRACALVINPOSTGRESQL MONGODB

HOTEL
RESERVATION BANKING ONLINE SHOP

BLACKBOX TESTING IN ACTION

▸ State of the art cloud-based
testing framework using
Jepsen and OLTPBench

W1 W2 Wn

Jepsen

Connection Pool

Cassandra

OLTPBench Load
Gens.

Cassandra

BLACKBOX TESTING IN ACTION

▸ State of the art cloud-based
testing framework using
Jepsen and OLTPBench

▸ TPC-C benchmark

Orders

BLACKBOX TESTING IN ACTION

Customers

Warehouses

Items

Stocks

▸ State of the art cloud-based
testing framework using
Jepsen and OLTPBench

▸ TPC-C benchmark

Orders

BLACKBOX TESTING IN ACTION

Customers

Warehouses

Items

Stocks

NEW_ORDER STOCK_LEVEL

ORDER_STATUS

PAYMENT

DELIVERY

▸ State of the art cloud-based
testing framework using
Jepsen and OLTPBench

▸ TPC-C benchmark

Invariant Broken?
CR1 Y
CR2 Y
CR3 Y
CR4 Y
CR5A N
CR5B N
CR6 Y
CR7A N
CR7B N
CR8 Y
CR9 Y
CR10 Y
CR11 Y
CR12 Y
NCR1 Y
NCR2 Y
NCR3 N
NCR4 N
NCR5 Y
NCR6 Y
NCR7 N

▸ State of the art cloud-based
testing framework using
Jepsen and OLTPBench

▸ TPC-C benchmark

▸ 21 application-level invariants
were analyzed

BLACKBOX TESTING IN ACTION

Invariant Broken?
CR1 Y
CR2 Y
CR3 Y
CR4 Y
CR5A N
CR5B N
CR6 Y
CR7A N
CR7B N
CR8 Y
CR9 Y
CR10 Y
CR11 Y
CR12 Y
NCR1 Y
NCR2 Y
NCR3 N
NCR4 N
NCR5 Y
NCR6 Y
NCR7 N

▸ State of the art cloud-based
testing framework using
Jepsen and OLTPBench

▸ TPC-C benchmark

▸ 21 application-level invariants
were analyzed

▸ Only 14 out of 21 invariants
were broken at best

33%
67%

1/3 of invariants
are assumed to
be preserved

BLACKBOX TESTING IN ACTION

WHITE-BOX ANALYSIS

▸ Systematic assessment of
anomalous executions within
a given program

WHITE-BOX ANALYSIS

▸ Systematic assessment of
anomalous executions within
a given program SELECT pay_cnt AS v

 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

WHITE-BOX ANALYSIS

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

▸ Systematic assessment of
anomalous executions within
a given program

▸ Data dependencies among
database operations

WHITE-BOX ANALYSIS

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

▸ Systematic assessment of
anomalous executions within
a given program

▸ Data dependencies among
database operations

▸ Execution properties (e.g.
order) affect dependent
operations

WHITE-BOX ANALYSIS

Does NOT witness
the update

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

▸ Systematic assessment of
anomalous executions within
a given program

▸ Data dependencies among
database operations

▸ Execution properties (e.g.
order) affect dependent
operations

WHITE-BOX ANALYSIS

Witnesses the update

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

▸ Systematic assessment of
anomalous executions within
a given program

▸ Data dependencies among
database operations

▸ Execution properties (e.g.
order) affect dependent
operations

▸ Cyclic dependencies
between transactions
correspond to anomalous
executions

WHITE-BOX ANALYSIS
Does NOT witness
the update

Does NOT witness
the update

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

SELECT pay_cnt AS v
 WHERE id=arg

TXN (arg)

UPDATE pay_cnt=v+1
 WHERE id=arg

▸ Systematic assessment of
anomalous executions within
a given program

▸ Data dependencies among
database operations

▸ Execution properties (e.g.
order) affect dependent
operations

▸ Cyclic dependencies
between transactions
correspond to anomalous
executions

WHITE-BOX ANALYSIS
Does NOT witness
the update

Does NOT witness
the update

Goal: statically construct valid
execution and database
instances with cyclic
dependencies

FORMAL EXECUTION MODEL

▸ Transactions are arbitrarily invoked

FORMAL EXECUTION MODEL

▸ Transactions are arbitrarily invoked
TXN TXN

op1
op2

op’1
op’2

FORMAL EXECUTION MODEL

▸ Transactions are arbitrarily invoked

▸ An Operation from an arbitrary
transaction is executed at a random
partition

TXN TXN

op1
op2

op’1
op’2

FORMAL EXECUTION MODEL

▸ Transactions are arbitrarily invoked

▸ An Operation from an arbitrary
transaction is executed at a random
partition

TXN TXN

Partition 1 Partition 2

op1
op2

op’1
op’2

FORMAL EXECUTION MODEL

▸ Transactions are arbitrarily invoked

▸ An Operation from an arbitrary
transaction is executed at a random
partition

TXN TXN

Partition 1 Partition 2

op1

op2
op’1
op’2

FORMAL EXECUTION MODEL

▸ Transactions are arbitrarily invoked

▸ An Operation from an arbitrary
transaction is executed at a random
partition

TXN TXN

Partition 1 Partition 2

op1

op2

op’1

op’2

FORMAL EXECUTION MODEL

▸ Transactions are arbitrarily invoked

▸ An Operation from an arbitrary
transaction is executed at a random
partition

▸ Operations create a set of read and write
effects upon execution in the partition

TXN TXN

Partition 1 Partition 2

op1

op2

op’1

op’2

FORMAL EXECUTION MODEL

▸ Transactions are arbitrarily invoked

▸ An Operation from an arbitrary
transaction is executed at a random
partition

▸ Operations create a set of read and write
effects upon execution in the partition

▸ A relations on the set of effects

TXN TXN

Partition 1 Partition 2

op1

op2

op’1

op’2

FORMAL EXECUTION MODEL

▸ Transactions are arbitrarily invoked

▸ An Operation from an arbitrary
transaction is executed at a random
partition

▸ Operations create a set of read and write
effects upon execution in the partition

▸ A relations on the set of effects
▸ visibility: causal precedence between

effects

TXN TXN

Partition 1 Partition 2

op1

op2

op’1

op’2

FORMAL EXECUTION MODEL

▸ Transactions are arbitrarily invoked

▸ An Operation from an arbitrary
transaction is executed at a random
partition

▸ Operations create a set of read and write
effects upon execution in the partition

▸ A relations on the set of effects
▸ visibility: causal precedence between

effects

TXN TXN

Partition 1 Partition 2

vis op1

op2

op’1

op’2

FORMAL EXECUTION MODEL

▸ Transactions are arbitrarily invoked

▸ An Operation from an arbitrary
transaction is executed at a random
partition

▸ Operations create a set of read and write
effects upon execution in the partition

▸ A relations on the set of effects
▸ visibility: causal precedence between

effects

TXN TXN

Partition 1 Partition 2

vis op1

op2

op’1

op’2

FORMAL EXECUTION MODEL

▸ Transactions are arbitrarily invoked

▸ An Operation from an arbitrary
transaction is executed at a random
partition

▸ Operations create a set of read and write
effects upon execution in the partition

▸ A relations on the set of effects
▸ visibility: causal precedence between

effects

TXN TXN

Partition 1 Partition 2

vis op1

op2

op’1

op’2

vis

FORMAL EXECUTION MODEL

▸ Transactions are arbitrarily invoked

▸ An Operation from an arbitrary
transaction is executed at a random
partition

▸ Operations create a set of read and write
effects upon execution in the partition

▸ A relations on the set of effects
▸ visibility: causal precedence between

effects

TXN TXN

Partition 1 Partition 2

vis op1

op2

op’1
op’2

vis

FORMAL EXECUTION MODEL

▸ Transactions are arbitrarily invoked

▸ An Operation from an arbitrary
transaction is executed at a random
partition

▸ Operations create a set of read and write
effects upon execution in the partition

▸ A relations on the set of effects
▸ visibility: causal precedence between

effects
▸ Only within a partition!

TXN TXN

Partition 1 Partition 2

vis op1

op2

op’1
op’2

vis

FORMAL EXECUTION MODEL

DEPENDENCY RELATIONS

▸ Operation-level dependencies
▸ write dependency (WW)

WW

UPDATE X

UPDATE X

▸ Operation-level dependencies
▸ write dependency (WW)
▸ read dependency (WR)

vis

WR

UPDATE X

SELECT X

DEPENDENCY RELATIONS

▸ Operation-level dependencies
▸ write dependency (WW)
▸ read dependency (WR)
▸ read anti-dependency (RW)

RW

UPDATE X

SELECT X

DEPENDENCY RELATIONS

FOL ENCODING

FOL ENCODING

▸ A language of axiomatic relations encoded as a
decidable fragment of first order logic (FOL)

FOL ENCODING

'C

▸ A language of axiomatic relations encoded as a
decidable fragment of first order logic (FOL)

▸ Finding bounded anomalies against a database
abstraction is reduced to finding satisfying
assignments to a formula

'C

FOL ENCODING

⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

▸ Valid assignments are constrained
by five conjuncts

▸ A language of axiomatic relations encoded in a
decidable fragment of first order logic (FOL)

▸ Finding bounded anomalies against a database
abstraction is reduced to finding satisfying
assignments to a formula

'C⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

'C

▸ A set of constraints which must be
satisfied by any execution of any
program

⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

'C

▸ A set of constraints which must be
satisfied by any execution of any
program

⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

WR

UPDATE X=1

SELECT X //X=0

'C

▸ A set of constraints which must be
satisfied by any execution of any
program

⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

WR induces the same read/written values

WR

UPDATE X=1

SELECT X //X=0

'C

▸ A set of constraints which must be
satisfied by any execution of any
program

⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

WR induces the same read/written values

WR

UPDATE X=1

SELECT X //X=0 WR

UPDATE X=1

SELECT X //X=1

'C⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

'C

▸ Includes a set of user-defined constraints on records

⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

'C

▸ Includes a set of user-defined constraints on records
▸ e.g. “all customer records must be older than 21”

⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

'C

▸ Includes a set of user-defined constraints on records
▸ e.g. “all customer records must be older than 21”

▸ Includes database-specific consistency and isolation constraints

⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

'C

▸ Includes a set of user-defined constraints on records
▸ e.g. “all customer records must be older than 21”

▸ Includes database-specific consistency and isolation constraints

⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

'C

▸ Includes a set of user-defined constraints on records
▸ e.g. “all customer records must be older than 21”

▸ Includes database-specific consistency and isolation constraints

⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

Only executions valid for the database abstraction are constructed

'C⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

'C

▸ Necessary conditions to establish a dependency relation between two
operation instances

⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

'C

▸ Necessary conditions to establish a dependency relation between two
operation instances

⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

RWUPDATE X SELECT X

'C

▸ Necessary conditions to establish a dependency relation between two
operation instances
▸ There is a mutually accessed record

⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

RWUPDATE X SELECT X

'C⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

UPDATE X SELECT X

if (A==true) { if (A==false) {
} }

▸ Necessary conditions to establish a valid dependency relation between
two operation instances
▸ There is a mutually accessed record
▸ Both operations are simultaneously reached by the control flow

'C⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

UPDATE X SELECT X

if (A==true) { if (A==true) {
} }

▸ Necessary conditions to establish a valid dependency relation between
two operation instances
▸ There is a mutually accessed record
▸ Both operations are simultaneously reached by the control flow

RW

'C⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

'C

▸ Sufficient conditions to establish a dependency relation between two
operation instances

⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

'C

▸ Sufficient conditions to establish a dependency relation between two
operation instances

⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

UPDATE X SELECT X

if (A==true) { if (A==true) {

} }

'C

▸ Sufficient conditions to establish a dependency relation between two
operation instances
▸ If there is a mutually accessed record

⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

UPDATE X SELECT X

if (A==true) { if (A==true) {

} }

'C

▸ Sufficient conditions to establish a dependency relation between two
operation instances
▸ If there is a mutually accessed record
▸ and both operations are reached

⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

UPDATE X SELECT X

if (A==true) { if (A==true) {

} }

'C

▸ Sufficient conditions to establish a dependency relation between two
operation instances
▸ If there is a mutually accessed record
▸ and both operations are reached
▸ and the update is visible to the select

⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

vis
UPDATE X SELECT X

if (A==true) { if (A==true) {

} }

'C

▸ Sufficient conditions to establish a dependency relation between two
operation instances
▸ If there is a mutually accessed record
▸ and both operations are reached
▸ and the update is visible to the select

⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

}Operations must be
dependent by WR

vis
UPDATE X SELECT X

if (A==true) { if (A==true) {

} }
WR

'C⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

'C

▸ Enforces the existence of an anomaly

⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

'C

▸ Enforces the existence of an anomaly
▸ Parametrized over three variables: i, j and k

⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

'C

▸ Enforces the existence of an anomaly
▸ Parametrized over three variables: i, j and k

⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

Bounds on the
state space

execution order

'C

▸ Enforces the existence of an anomaly
▸ Parametrized over three variables: i, j and k
▸ Instantiates i serially executed transactions,

⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

op
op
op

op
op
op

op
op

op
op
op
op

i transactions
serially executed

execution order

'C

▸ Enforces the existence of an anomaly
▸ Parametrized over three variables: i, j and k
▸ Instantiates i serially executed transactions,
▸ leading to j concurrent transactions

⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

op
op
op

op
op
op

op
op

op
op
op
op

i transactions j transactions

op
op
op op

op
op

op
op

serially executed concurrently executed

execution order

'C

▸ Enforces the existence of an anomaly
▸ Parametrized over three variables: i, j and k
▸ Instantiates i serially executed transactions,
▸ leading to j concurrent transactions
▸ that form a dependency cycle of length k

⌘ 'context ^ 'db ^ 'dep! ^ '!dep ^ 'anomaly

op
op
op

op
op
op

op
op

op
op
op
op

i transactions j transactions

op
op
op op

op
op

op
op

dependency
cycle of length k

serially executed concurrently executed

TESTING; FUNDAMENTAL CHALLENGES (REVISITED)

▸ Rich and precise encoding

TESTING; FUNDAMENTAL CHALLENGES (REVISITED)

▸ Rich and precise encoding

TESTING; FUNDAMENTAL CHALLENGES (REVISITED)

'C

▸ Rich and precise encoding
▸ Triggering anomalies

requires determining:
▸ Initial database state
▸ Input arguments
▸ Execution order
▸ Network delays

TESTING; FUNDAMENTAL CHALLENGES (REVISITED)

'C

▸ Rich and precise encoding
▸ Triggering anomalies

requires determining:
▸ Initial database state
▸ Input arguments
▸ Execution order
▸ Network delays

TESTING; FUNDAMENTAL CHALLENGES (REVISITED)

'C

Concrete database
instances

✅

▸ Rich and precise encoding
▸ Triggering anomalies

requires determining:
▸ Initial database state
▸ Input arguments
▸ Execution order
▸ Network delays

TESTING; FUNDAMENTAL CHALLENGES (REVISITED)

'C
Transaction
instances

Concrete database
instances

✅

✅

▸ Rich and precise encoding
▸ Triggering anomalies

requires determining:
▸ Initial database state
▸ Input arguments
▸ Execution order
▸ Network delays

TESTING; FUNDAMENTAL CHALLENGES (REVISITED)

'C
Transaction
instances

Concrete database
instances

Control-flow
sensitive

✅

✅

▸ Rich and precise encoding
▸ Triggering anomalies

requires determining:
▸ Initial database state
▸ Input arguments
▸ Execution order
▸ Network delays

TESTING; FUNDAMENTAL CHALLENGES (REVISITED)

'C
Transaction
instances

Concrete database
instances

Interleaved
execution order

Control-flow
sensitive

✅

✅
✅

▸ Rich and precise encoding
▸ Triggering anomalies

requires determining:
▸ Initial database state
▸ Input arguments
▸ Execution order
▸ Network delays

TESTING; FUNDAMENTAL CHALLENGES (REVISITED)

'C
Transaction
instances

Random
partition
assignment

Concrete database
instances

Interleaved
execution order

Control-flow
sensitive

✅

✅
✅

✅

CLOTHO: BUG DETECTION MECHANISM

CLOTHO: BUG DETECTION MECHANISM

▸ Static analysis engine for java programs

CLOTHO: BUG DETECTION MECHANISM

Java Program▸ Static analysis engine for java programs

CLOTHO: BUG DETECTION MECHANISM

Front-end
Compiler

Java Program▸ Static analysis engine for java programs
▸ Compiles programs down to an

abstract representation

CLOTHO: BUG DETECTION MECHANISM

Front-end
Compiler

Encoding
Engine

Java Program▸ Static analysis engine for java programs
▸ Compiles programs down to an

abstract representation
▸ FOL encoding engine, backed by Z3

SMT solver

CLOTHO: BUG DETECTION MECHANISM

Front-end
Compiler

Encoding
Engine

SMT Solver

Java Program▸ Static analysis engine for java programs
▸ Compiles programs down to an

abstract representation
▸ FOL encoding engine, backed by Z3

SMT solver

CLOTHO: BUG DETECTION MECHANISM

Front-end
Compiler

Encoding
Engine

SMT Solver

Java Program▸ Static analysis engine for java programs
▸ Compiles programs down to an

abstract representation
▸ FOL encoding engine, backed by Z3

SMT solver
▸ Efficient search algorithm

CLOTHO: BUG DETECTION MECHANISM

Front-end
Compiler

Encoding
Engine

SMT Solver

Code
Annotator

Java Program▸ Static analysis engine for java programs
▸ Compiles programs down to an

abstract representation
▸ FOL encoding engine, backed by Z3

SMT solver
▸ Efficient search algorithm
▸ Returns annotated code containing

concrete anomalies

Annotated Java
Program

CLOTHO: REPLAYING MECHANISM

CLOTHO: REPLAYING MECHANISM

▸ Directed test framework

Managed
JDBC Driver

Annotated
Java Code

Test Administrator

Managed
JDBC Driver

DB Node

Driver

DB Node

Annotated
Java Code

Driver

CLOTHO: REPLAYING MECHANISM

▸ Directed test framework
▸ automated step-by-step

replaying of annotated buggy
programs

Managed
JDBC Driver

Annotated
Java Code

Test Administrator

Managed
JDBC Driver

DB Node

Driver

DB Node

Annotated
Java Code

Driver

CLOTHO: REPLAYING MECHANISM

▸ Directed test framework
▸ automated step-by-step

replaying of annotated buggy
programs

▸ synchronized drivers Managed
JDBC Driver

Annotated
Java Code

Test Administrator

Managed
JDBC Driver

DB Node

Driver

DB Node

Annotated
Java Code

Driver

CLOTHO: REPLAYING MECHANISM

▸ Directed test framework
▸ automated step-by-step

replaying of annotated buggy
programs

▸ synchronized drivers
▸ managed connection throttler in

a cluster of database nodes

Managed
JDBC Driver

Annotated
Java Code

Test Administrator

Managed
JDBC Driver

DB Node

Driver

DB Node

Annotated
Java Code

Driver

EMPIRICAL RESULTS: APPLICABILITY

EMPIRICAL RESULTS: APPLICABILITY

▸ 7 benchmarks of various complexity and different
properties were analyzed

A

N
O

M
A

LI
ES

0
10
20
30
40
50
60

SEATS TATP TPC_C SMALLBANK VOTER TWITTER WIKIPEDIA

EMPIRICAL RESULTS: APPLICABILITY

▸ 7 benchmarks of various complexity and different
properties were analyzed

▸ Serializability anomalies were found and successfully
replayed in 5 application

A

N
O

M
A

LI
ES

0
10
20
30
40
50
60

SEATS TATP TPC_C SMALLBANK VOTER TWITTER WIKIPEDIA

EMPIRICAL RESULTS: APPLICABILITY

▸ 7 benchmarks of various complexity and different
properties were analyzed

▸ Serializability anomalies were found and successfully
replayed in 5 application

~25m per application (avg)
17 anomalies per application (avg)

A

N
O

M
A

LI
ES

0
10
20
30
40
50
60

SEATS TATP TPC_C SMALLBANK VOTER TWITTER WIKIPEDIA

EMPIRICAL RESULTS: COMPARISON TO BLACKBOX TESTING

Invariant Blackbox CLOTHO
CR1 Y Y
CR2 Y Y
CR3 Y Y
CR4 Y Y
CR5A N Y
CR5B N Y
CR6 Y Y
CR7A N Y
CR7B N Y
CR8 Y Y
CR9 Y Y
CR10 Y Y
CR11 Y Y
CR12 Y Y
NCR1 Y Y
NCR2 Y Y
NCR3 N Y
NCR4 N Y
NCR5 Y Y
NCR6 Y Y
NCR7 N Y

▸ Case study: TPC-C

EMPIRICAL RESULTS: COMPARISON TO BLACKBOX TESTING

Invariant Blackbox CLOTHO
CR1 Y Y
CR2 Y Y
CR3 Y Y
CR4 Y Y
CR5A N Y
CR5B N Y
CR6 Y Y
CR7A N Y
CR7B N Y
CR8 Y Y
CR9 Y Y
CR10 Y Y
CR11 Y Y
CR12 Y Y
NCR1 Y Y
NCR2 Y Y
NCR3 N Y
NCR4 N Y
NCR5 Y Y
NCR6 Y Y
NCR7 N Y

▸ Case study: TPC-C

▸ Anomalies were studied and mapped to
invariant violations

EMPIRICAL RESULTS: COMPARISON TO BLACKBOX TESTING

Invariant Blackbox CLOTHO
CR1 Y Y
CR2 Y Y
CR3 Y Y
CR4 Y Y
CR5A N Y
CR5B N Y
CR6 Y Y
CR7A N Y
CR7B N Y
CR8 Y Y
CR9 Y Y
CR10 Y Y
CR11 Y Y
CR12 Y Y
NCR1 Y Y
NCR2 Y Y
NCR3 N Y
NCR4 N Y
NCR5 Y Y
NCR6 Y Y
NCR7 N Y

▸ Case study: TPC-C

▸ Anomalies were studied and mapped to
invariant violations

▸ All invariants were broken as a result of at
least one serializability anomaly

EMPIRICAL RESULTS: COMPARISON TO BLACKBOX TESTING

Invariant Blackbox CLOTHO
CR1 Y Y
CR2 Y Y
CR3 Y Y
CR4 Y Y
CR5A N Y
CR5B N Y
CR6 Y Y
CR7A N Y
CR7B N Y
CR8 Y Y
CR9 Y Y
CR10 Y Y
CR11 Y Y
CR12 Y Y
NCR1 Y Y
NCR2 Y Y
NCR3 N Y
NCR4 N Y
NCR5 Y Y
NCR6 Y Y
NCR7 N Y

▸ Case study: TPC-C

▸ Anomalies were studied and mapped to
invariant violations

▸ All invariants were broken as a result of at
least one serializability anomaly

▸ Only 3 serializability anomalies did not
result in any invariant violation

EMPIRICAL RESULTS: COMPARISON TO BLACKBOX TESTING

Invariant Blackbox CLOTHO
CR1 Y Y
CR2 Y Y
CR3 Y Y
CR4 Y Y
CR5A N Y
CR5B N Y
CR6 Y Y
CR7A N Y
CR7B N Y
CR8 Y Y
CR9 Y Y
CR10 Y Y
CR11 Y Y
CR12 Y Y
NCR1 Y Y
NCR2 Y Y
NCR3 N Y
NCR4 N Y
NCR5 Y Y
NCR6 Y Y
NCR7 N Y

SUMMARY

SUMMARY

▸ CLOTHO: an end-to-end directed testing framework for weakly
consistent database programs

SUMMARY

▸ CLOTHO: an end-to-end directed testing framework for weakly
consistent database programs

▸ The problem of finding serializability anomalies is reduced to finding
satisfying assignments to a formula

SUMMARY

▸ CLOTHO: an end-to-end directed testing framework for weakly
consistent database programs

▸ The problem of finding serializability anomalies is reduced to finding
satisfying assignments to a formula

▸ Applicable on many benchmark applications

SUMMARY

▸ CLOTHO: an end-to-end directed testing framework for weakly
consistent database programs

▸ The problem of finding serializability anomalies is reduced to finding
satisfying assignments to a formula

▸ Applicable on many benchmark applications

▸ Outperforms state of the art blackbox testing techniques

QUESTIONS?
THANK YOU!

TOOL AVAILABLE

ANNOTATED CODE EXAMPLE

▸ Includes transaction instances, arguments

▸ Accompanied by a test configuration file specifying execution order
and networking details

NECESSARY RULE EXAMPLE

▸ Rules specify the necessary conditions for establishing a dependency
relation between two database operation instances

SUFFICIENT RULE EXAMPLE

▸ Rules specify the sufficient conditions for establishing a dependency
relation between two database operation instances

STRUCTURALLY SIMILAR ANOMALIES

▸ All share the same transaction instances and the same edges
between them:

SEARCH ALGORITHM

optimization: inner
loop for finding
structurally similar
anomalies

EFFECT OF OPTIMIZATIONS IN SEARCH ALGORITHM

Number of
anomalies found
within the same
given time period

RELATED WORKS

▸ [Kaki et al. 2018], [Nagar et al. 2018]
▸ Do not incorporate their techniques into a full test-and-reply environment

▸ [Brutschy et al. 2018]
▸ Does not suit query-based models where dependences between two

operations cannot be decided locally, but are reliant on other operations

▸ [Warszawski and Bailis 2017]
▸ Does not consider how to help determining if applications executing on

storage systems that expose guarantees weaker than serializability are
actually correct

